Loading…
Delta quasi Cauchy sequences in metric spaces
In this extended abstract, we introduce the concept of delta quasi Cauchy sequences in metric spaces. A function f defined on a subset of a metric space X to X is called delta ward continuous if it preserves delta quasi Cauchy sequences, where a sequence (xk) of points in X is called delta quasi Cau...
Saved in:
Main Author: | |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In this extended abstract, we introduce the concept of delta quasi Cauchy sequences in metric spaces. A function f defined on a subset of a metric space X to X is called delta ward continuous if it preserves delta quasi Cauchy sequences, where a sequence (xk) of points in X is called delta quasi Cauchy if limn→∞[d(xk+2,xk+1)−d(xk+1,xk)]=0. A new type compactness in terms of δ-quasi Cauchy sequences, namely δ-ward compactness is also introduced, and some theorems related to δ-ward continuity and δ-ward compactness are obtained. Some other types of continuities are also discussed, and interesting results are obtained. |
---|---|
ISSN: | 0094-243X 1551-7616 |
DOI: | 10.1063/5.0042190 |