Loading…

Delta quasi Cauchy sequences in metric spaces

In this extended abstract, we introduce the concept of delta quasi Cauchy sequences in metric spaces. A function f defined on a subset of a metric space X to X is called delta ward continuous if it preserves delta quasi Cauchy sequences, where a sequence (xk) of points in X is called delta quasi Cau...

Full description

Saved in:
Bibliographic Details
Main Author: Cakalli, Huseyin
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue 1
container_start_page
container_title
container_volume 2334
creator Cakalli, Huseyin
description In this extended abstract, we introduce the concept of delta quasi Cauchy sequences in metric spaces. A function f defined on a subset of a metric space X to X is called delta ward continuous if it preserves delta quasi Cauchy sequences, where a sequence (xk) of points in X is called delta quasi Cauchy if limn→∞[d(xk+2,xk+1)−d(xk+1,xk)]=0. A new type compactness in terms of δ-quasi Cauchy sequences, namely δ-ward compactness is also introduced, and some theorems related to δ-ward continuity and δ-ward compactness are obtained. Some other types of continuities are also discussed, and interesting results are obtained.
doi_str_mv 10.1063/5.0042190
format conference_proceeding
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1063_5_0042190</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2495153523</sourcerecordid><originalsourceid>FETCH-LOGICAL-p288t-2940835ffd5fc3f95267b14ad0c13b83f7b28510d90b27b14c77d4e0a86bcc963</originalsourceid><addsrcrecordid>eNp9kE9LAzEUxIMouFYPfoOANyH15d8mOUq1KhS8KHgL2WyCW9rd7SYr9Nu7pQVvngZmfsx7DEK3FOYUSv4g5wCCUQNnqKBSUqJKWp6jAsAIwgT_ukRXKa0BmFFKF4g8hU12eDe61OCFG_33HqewG0PrQ8JNi7chD43HqXeTcY0uotukcHPSGfpcPn8sXsnq_eVt8bgiPdM6E2YEaC5jrGX0PBrJSlVR4WrwlFeaR1UxLSnUBip2SLxStQjgdFl5b0o-Q3fH3n7opl9StutuHNrppGXCSCq5ZHyi7o9U8k12uela2w_N1g17S8Ee5rDSnub4D_7phj_Q9nXkvzAEXoU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>2495153523</pqid></control><display><type>conference_proceeding</type><title>Delta quasi Cauchy sequences in metric spaces</title><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><creator>Cakalli, Huseyin</creator><contributor>Canak, Ibrahim ; Dik, Mehmet ; Kandemir, Hacer Sengul ; Gurtug, Ozay ; Uyaver, Sahin ; Harte, Robin ; Turkoglu, Arap Duran ; Kocinac, Ljubisa D. R. ; Ashyralyev, Allaberen ; Cakalli, Huseyin ; Ucgun, Filiz Cagatay ; Savas, Ekrem ; Sezer, Sefa Anil ; Akay, Kadri Ulas ; Ashyralyyev, Charyyar ; Tez, Mujgan ; Onvural, Oruc Raif ; Sahin, Hakan</contributor><creatorcontrib>Cakalli, Huseyin ; Canak, Ibrahim ; Dik, Mehmet ; Kandemir, Hacer Sengul ; Gurtug, Ozay ; Uyaver, Sahin ; Harte, Robin ; Turkoglu, Arap Duran ; Kocinac, Ljubisa D. R. ; Ashyralyev, Allaberen ; Cakalli, Huseyin ; Ucgun, Filiz Cagatay ; Savas, Ekrem ; Sezer, Sefa Anil ; Akay, Kadri Ulas ; Ashyralyyev, Charyyar ; Tez, Mujgan ; Onvural, Oruc Raif ; Sahin, Hakan</creatorcontrib><description>In this extended abstract, we introduce the concept of delta quasi Cauchy sequences in metric spaces. A function f defined on a subset of a metric space X to X is called delta ward continuous if it preserves delta quasi Cauchy sequences, where a sequence (xk) of points in X is called delta quasi Cauchy if limn→∞[d(xk+2,xk+1)−d(xk+1,xk)]=0. A new type compactness in terms of δ-quasi Cauchy sequences, namely δ-ward compactness is also introduced, and some theorems related to δ-ward continuity and δ-ward compactness are obtained. Some other types of continuities are also discussed, and interesting results are obtained.</description><identifier>ISSN: 0094-243X</identifier><identifier>EISSN: 1551-7616</identifier><identifier>DOI: 10.1063/5.0042190</identifier><identifier>CODEN: APCPCS</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Metric space ; Sequences</subject><ispartof>AIP conference proceedings, 2021, Vol.2334 (1)</ispartof><rights>Author(s)</rights><rights>2021 Author(s). Published by AIP Publishing.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>309,310,314,780,784,789,790,23928,23929,25138,27922,27923</link.rule.ids></links><search><contributor>Canak, Ibrahim</contributor><contributor>Dik, Mehmet</contributor><contributor>Kandemir, Hacer Sengul</contributor><contributor>Gurtug, Ozay</contributor><contributor>Uyaver, Sahin</contributor><contributor>Harte, Robin</contributor><contributor>Turkoglu, Arap Duran</contributor><contributor>Kocinac, Ljubisa D. R.</contributor><contributor>Ashyralyev, Allaberen</contributor><contributor>Cakalli, Huseyin</contributor><contributor>Ucgun, Filiz Cagatay</contributor><contributor>Savas, Ekrem</contributor><contributor>Sezer, Sefa Anil</contributor><contributor>Akay, Kadri Ulas</contributor><contributor>Ashyralyyev, Charyyar</contributor><contributor>Tez, Mujgan</contributor><contributor>Onvural, Oruc Raif</contributor><contributor>Sahin, Hakan</contributor><creatorcontrib>Cakalli, Huseyin</creatorcontrib><title>Delta quasi Cauchy sequences in metric spaces</title><title>AIP conference proceedings</title><description>In this extended abstract, we introduce the concept of delta quasi Cauchy sequences in metric spaces. A function f defined on a subset of a metric space X to X is called delta ward continuous if it preserves delta quasi Cauchy sequences, where a sequence (xk) of points in X is called delta quasi Cauchy if limn→∞[d(xk+2,xk+1)−d(xk+1,xk)]=0. A new type compactness in terms of δ-quasi Cauchy sequences, namely δ-ward compactness is also introduced, and some theorems related to δ-ward continuity and δ-ward compactness are obtained. Some other types of continuities are also discussed, and interesting results are obtained.</description><subject>Metric space</subject><subject>Sequences</subject><issn>0094-243X</issn><issn>1551-7616</issn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2021</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNp9kE9LAzEUxIMouFYPfoOANyH15d8mOUq1KhS8KHgL2WyCW9rd7SYr9Nu7pQVvngZmfsx7DEK3FOYUSv4g5wCCUQNnqKBSUqJKWp6jAsAIwgT_ukRXKa0BmFFKF4g8hU12eDe61OCFG_33HqewG0PrQ8JNi7chD43HqXeTcY0uotukcHPSGfpcPn8sXsnq_eVt8bgiPdM6E2YEaC5jrGX0PBrJSlVR4WrwlFeaR1UxLSnUBip2SLxStQjgdFl5b0o-Q3fH3n7opl9StutuHNrppGXCSCq5ZHyi7o9U8k12uela2w_N1g17S8Ee5rDSnub4D_7phj_Q9nXkvzAEXoU</recordid><startdate>20210302</startdate><enddate>20210302</enddate><creator>Cakalli, Huseyin</creator><general>American Institute of Physics</general><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20210302</creationdate><title>Delta quasi Cauchy sequences in metric spaces</title><author>Cakalli, Huseyin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p288t-2940835ffd5fc3f95267b14ad0c13b83f7b28510d90b27b14c77d4e0a86bcc963</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Metric space</topic><topic>Sequences</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cakalli, Huseyin</creatorcontrib><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cakalli, Huseyin</au><au>Canak, Ibrahim</au><au>Dik, Mehmet</au><au>Kandemir, Hacer Sengul</au><au>Gurtug, Ozay</au><au>Uyaver, Sahin</au><au>Harte, Robin</au><au>Turkoglu, Arap Duran</au><au>Kocinac, Ljubisa D. R.</au><au>Ashyralyev, Allaberen</au><au>Cakalli, Huseyin</au><au>Ucgun, Filiz Cagatay</au><au>Savas, Ekrem</au><au>Sezer, Sefa Anil</au><au>Akay, Kadri Ulas</au><au>Ashyralyyev, Charyyar</au><au>Tez, Mujgan</au><au>Onvural, Oruc Raif</au><au>Sahin, Hakan</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Delta quasi Cauchy sequences in metric spaces</atitle><btitle>AIP conference proceedings</btitle><date>2021-03-02</date><risdate>2021</risdate><volume>2334</volume><issue>1</issue><issn>0094-243X</issn><eissn>1551-7616</eissn><coden>APCPCS</coden><abstract>In this extended abstract, we introduce the concept of delta quasi Cauchy sequences in metric spaces. A function f defined on a subset of a metric space X to X is called delta ward continuous if it preserves delta quasi Cauchy sequences, where a sequence (xk) of points in X is called delta quasi Cauchy if limn→∞[d(xk+2,xk+1)−d(xk+1,xk)]=0. A new type compactness in terms of δ-quasi Cauchy sequences, namely δ-ward compactness is also introduced, and some theorems related to δ-ward continuity and δ-ward compactness are obtained. Some other types of continuities are also discussed, and interesting results are obtained.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0042190</doi><tpages>4</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0094-243X
ispartof AIP conference proceedings, 2021, Vol.2334 (1)
issn 0094-243X
1551-7616
language eng
recordid cdi_scitation_primary_10_1063_5_0042190
source American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)
subjects Metric space
Sequences
title Delta quasi Cauchy sequences in metric spaces
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T14%3A24%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Delta%20quasi%20Cauchy%20sequences%20in%20metric%20spaces&rft.btitle=AIP%20conference%20proceedings&rft.au=Cakalli,%20Huseyin&rft.date=2021-03-02&rft.volume=2334&rft.issue=1&rft.issn=0094-243X&rft.eissn=1551-7616&rft.coden=APCPCS&rft_id=info:doi/10.1063/5.0042190&rft_dat=%3Cproquest_scita%3E2495153523%3C/proquest_scita%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-p288t-2940835ffd5fc3f95267b14ad0c13b83f7b28510d90b27b14c77d4e0a86bcc963%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2495153523&rft_id=info:pmid/&rfr_iscdi=true