Loading…
Symmetries, constants of the motion, and reduction of mechanical systems with external forces
This paper is devoted to the study of mechanical systems subjected to external forces in the framework of symplectic geometry. We obtain Noether’s theorem for Lagrangian systems with external forces, among other results regarding symmetries and conserved quantities. We particularize our results for...
Saved in:
Published in: | Journal of mathematical physics 2021-04, Vol.62 (4) |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This paper is devoted to the study of mechanical systems subjected to external forces in the framework of symplectic geometry. We obtain Noether’s theorem for Lagrangian systems with external forces, among other results regarding symmetries and conserved quantities. We particularize our results for the so-called Rayleigh dissipation, i.e., external forces that are derived from a dissipation function, and illustrate them with some examples. Moreover, we present a theory for the reduction in Lagrangian systems subjected to external forces, which are invariant under the action of a Lie group. |
---|---|
ISSN: | 0022-2488 1089-7658 |
DOI: | 10.1063/5.0045073 |