Loading…
Symmetries, constants of the motion, and reduction of mechanical systems with external forces
This paper is devoted to the study of mechanical systems subjected to external forces in the framework of symplectic geometry. We obtain Noether’s theorem for Lagrangian systems with external forces, among other results regarding symmetries and conserved quantities. We particularize our results for...
Saved in:
Published in: | Journal of mathematical physics 2021-04, Vol.62 (4) |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c327t-7636a9ab87463a450c1c9df312ff12411cbc68a995785aa67a089aa9099d042f3 |
---|---|
cites | cdi_FETCH-LOGICAL-c327t-7636a9ab87463a450c1c9df312ff12411cbc68a995785aa67a089aa9099d042f3 |
container_end_page | |
container_issue | 4 |
container_start_page | |
container_title | Journal of mathematical physics |
container_volume | 62 |
creator | de León, Manuel Lainz, Manuel López-Gordón, Asier |
description | This paper is devoted to the study of mechanical systems subjected to external forces in the framework of symplectic geometry. We obtain Noether’s theorem for Lagrangian systems with external forces, among other results regarding symmetries and conserved quantities. We particularize our results for the so-called Rayleigh dissipation, i.e., external forces that are derived from a dissipation function, and illustrate them with some examples. Moreover, we present a theory for the reduction in Lagrangian systems subjected to external forces, which are invariant under the action of a Lie group. |
doi_str_mv | 10.1063/5.0045073 |
format | article |
fullrecord | <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1063_5_0045073</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2507785342</sourcerecordid><originalsourceid>FETCH-LOGICAL-c327t-7636a9ab87463a450c1c9df312ff12411cbc68a995785aa67a089aa9099d042f3</originalsourceid><addsrcrecordid>eNqdkE1LAzEQhoMoWKsH_0HAk9Kt-drd5CjFLyh4UI8SptmEbuluapKq_fdmacG7p2Fmnhne90XokpIpJRW_LaeEiJLU_AiNKJGqqKtSHqMRIYwVTEh5is5iXBFCqRRihD5ed11nU2htnGDj-5igTxF7h9PS4s6n1vcTDH2Dg222ZmiHZWfNEvrWwBrHXUy2i_i7TUtsf5INfZ46H4yN5-jEwTrai0Mdo_eH-7fZUzF_eXye3c0Lw1mdskZegYKFrEXFIcs31KjGccqco0xQahamkqBUWcsSoKohOwNQRKmGCOb4GF3t_26C_9zamPTKbwcdUbMcRr7igmXqek-Z4GMM1ulNaDsIO02JHtLTpT6kl9mbPRtNm2Cw_T_4y4c_UG-yqV-3B32O</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2507785342</pqid></control><display><type>article</type><title>Symmetries, constants of the motion, and reduction of mechanical systems with external forces</title><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><source>AIP Journals (American Institute of Physics)</source><creator>de León, Manuel ; Lainz, Manuel ; López-Gordón, Asier</creator><creatorcontrib>de León, Manuel ; Lainz, Manuel ; López-Gordón, Asier</creatorcontrib><description>This paper is devoted to the study of mechanical systems subjected to external forces in the framework of symplectic geometry. We obtain Noether’s theorem for Lagrangian systems with external forces, among other results regarding symmetries and conserved quantities. We particularize our results for the so-called Rayleigh dissipation, i.e., external forces that are derived from a dissipation function, and illustrate them with some examples. Moreover, we present a theory for the reduction in Lagrangian systems subjected to external forces, which are invariant under the action of a Lie group.</description><identifier>ISSN: 0022-2488</identifier><identifier>EISSN: 1089-7658</identifier><identifier>DOI: 10.1063/5.0045073</identifier><identifier>CODEN: JMAPAQ</identifier><language>eng</language><publisher>New York: American Institute of Physics</publisher><subject>Lie groups ; Mechanical systems ; Physics ; Reduction</subject><ispartof>Journal of mathematical physics, 2021-04, Vol.62 (4)</ispartof><rights>Author(s)</rights><rights>2021 Author(s). Published under license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c327t-7636a9ab87463a450c1c9df312ff12411cbc68a995785aa67a089aa9099d042f3</citedby><cites>FETCH-LOGICAL-c327t-7636a9ab87463a450c1c9df312ff12411cbc68a995785aa67a089aa9099d042f3</cites><orcidid>0000-0002-9620-9647 ; 0000-0002-2368-5853 ; 0000-0002-8028-2348</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jmp/article-lookup/doi/10.1063/5.0045073$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,780,782,784,795,27924,27925,76383</link.rule.ids></links><search><creatorcontrib>de León, Manuel</creatorcontrib><creatorcontrib>Lainz, Manuel</creatorcontrib><creatorcontrib>López-Gordón, Asier</creatorcontrib><title>Symmetries, constants of the motion, and reduction of mechanical systems with external forces</title><title>Journal of mathematical physics</title><description>This paper is devoted to the study of mechanical systems subjected to external forces in the framework of symplectic geometry. We obtain Noether’s theorem for Lagrangian systems with external forces, among other results regarding symmetries and conserved quantities. We particularize our results for the so-called Rayleigh dissipation, i.e., external forces that are derived from a dissipation function, and illustrate them with some examples. Moreover, we present a theory for the reduction in Lagrangian systems subjected to external forces, which are invariant under the action of a Lie group.</description><subject>Lie groups</subject><subject>Mechanical systems</subject><subject>Physics</subject><subject>Reduction</subject><issn>0022-2488</issn><issn>1089-7658</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqdkE1LAzEQhoMoWKsH_0HAk9Kt-drd5CjFLyh4UI8SptmEbuluapKq_fdmacG7p2Fmnhne90XokpIpJRW_LaeEiJLU_AiNKJGqqKtSHqMRIYwVTEh5is5iXBFCqRRihD5ed11nU2htnGDj-5igTxF7h9PS4s6n1vcTDH2Dg222ZmiHZWfNEvrWwBrHXUy2i_i7TUtsf5INfZ46H4yN5-jEwTrai0Mdo_eH-7fZUzF_eXye3c0Lw1mdskZegYKFrEXFIcs31KjGccqco0xQahamkqBUWcsSoKohOwNQRKmGCOb4GF3t_26C_9zamPTKbwcdUbMcRr7igmXqek-Z4GMM1ulNaDsIO02JHtLTpT6kl9mbPRtNm2Cw_T_4y4c_UG-yqV-3B32O</recordid><startdate>20210401</startdate><enddate>20210401</enddate><creator>de León, Manuel</creator><creator>Lainz, Manuel</creator><creator>López-Gordón, Asier</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>JQ2</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-9620-9647</orcidid><orcidid>https://orcid.org/0000-0002-2368-5853</orcidid><orcidid>https://orcid.org/0000-0002-8028-2348</orcidid></search><sort><creationdate>20210401</creationdate><title>Symmetries, constants of the motion, and reduction of mechanical systems with external forces</title><author>de León, Manuel ; Lainz, Manuel ; López-Gordón, Asier</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c327t-7636a9ab87463a450c1c9df312ff12411cbc68a995785aa67a089aa9099d042f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Lie groups</topic><topic>Mechanical systems</topic><topic>Physics</topic><topic>Reduction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>de León, Manuel</creatorcontrib><creatorcontrib>Lainz, Manuel</creatorcontrib><creatorcontrib>López-Gordón, Asier</creatorcontrib><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of mathematical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>de León, Manuel</au><au>Lainz, Manuel</au><au>López-Gordón, Asier</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Symmetries, constants of the motion, and reduction of mechanical systems with external forces</atitle><jtitle>Journal of mathematical physics</jtitle><date>2021-04-01</date><risdate>2021</risdate><volume>62</volume><issue>4</issue><issn>0022-2488</issn><eissn>1089-7658</eissn><coden>JMAPAQ</coden><abstract>This paper is devoted to the study of mechanical systems subjected to external forces in the framework of symplectic geometry. We obtain Noether’s theorem for Lagrangian systems with external forces, among other results regarding symmetries and conserved quantities. We particularize our results for the so-called Rayleigh dissipation, i.e., external forces that are derived from a dissipation function, and illustrate them with some examples. Moreover, we present a theory for the reduction in Lagrangian systems subjected to external forces, which are invariant under the action of a Lie group.</abstract><cop>New York</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0045073</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-9620-9647</orcidid><orcidid>https://orcid.org/0000-0002-2368-5853</orcidid><orcidid>https://orcid.org/0000-0002-8028-2348</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-2488 |
ispartof | Journal of mathematical physics, 2021-04, Vol.62 (4) |
issn | 0022-2488 1089-7658 |
language | eng |
recordid | cdi_scitation_primary_10_1063_5_0045073 |
source | American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list); AIP Journals (American Institute of Physics) |
subjects | Lie groups Mechanical systems Physics Reduction |
title | Symmetries, constants of the motion, and reduction of mechanical systems with external forces |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T23%3A59%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Symmetries,%20constants%20of%20the%20motion,%20and%20reduction%20of%20mechanical%20systems%20with%20external%20forces&rft.jtitle=Journal%20of%20mathematical%20physics&rft.au=de%20Le%C3%B3n,%20Manuel&rft.date=2021-04-01&rft.volume=62&rft.issue=4&rft.issn=0022-2488&rft.eissn=1089-7658&rft.coden=JMAPAQ&rft_id=info:doi/10.1063/5.0045073&rft_dat=%3Cproquest_scita%3E2507785342%3C/proquest_scita%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c327t-7636a9ab87463a450c1c9df312ff12411cbc68a995785aa67a089aa9099d042f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2507785342&rft_id=info:pmid/&rfr_iscdi=true |