Loading…

Symmetries, constants of the motion, and reduction of mechanical systems with external forces

This paper is devoted to the study of mechanical systems subjected to external forces in the framework of symplectic geometry. We obtain Noether’s theorem for Lagrangian systems with external forces, among other results regarding symmetries and conserved quantities. We particularize our results for...

Full description

Saved in:
Bibliographic Details
Published in:Journal of mathematical physics 2021-04, Vol.62 (4)
Main Authors: de León, Manuel, Lainz, Manuel, López-Gordón, Asier
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c327t-7636a9ab87463a450c1c9df312ff12411cbc68a995785aa67a089aa9099d042f3
cites cdi_FETCH-LOGICAL-c327t-7636a9ab87463a450c1c9df312ff12411cbc68a995785aa67a089aa9099d042f3
container_end_page
container_issue 4
container_start_page
container_title Journal of mathematical physics
container_volume 62
creator de León, Manuel
Lainz, Manuel
López-Gordón, Asier
description This paper is devoted to the study of mechanical systems subjected to external forces in the framework of symplectic geometry. We obtain Noether’s theorem for Lagrangian systems with external forces, among other results regarding symmetries and conserved quantities. We particularize our results for the so-called Rayleigh dissipation, i.e., external forces that are derived from a dissipation function, and illustrate them with some examples. Moreover, we present a theory for the reduction in Lagrangian systems subjected to external forces, which are invariant under the action of a Lie group.
doi_str_mv 10.1063/5.0045073
format article
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1063_5_0045073</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2507785342</sourcerecordid><originalsourceid>FETCH-LOGICAL-c327t-7636a9ab87463a450c1c9df312ff12411cbc68a995785aa67a089aa9099d042f3</originalsourceid><addsrcrecordid>eNqdkE1LAzEQhoMoWKsH_0HAk9Kt-drd5CjFLyh4UI8SptmEbuluapKq_fdmacG7p2Fmnhne90XokpIpJRW_LaeEiJLU_AiNKJGqqKtSHqMRIYwVTEh5is5iXBFCqRRihD5ed11nU2htnGDj-5igTxF7h9PS4s6n1vcTDH2Dg222ZmiHZWfNEvrWwBrHXUy2i_i7TUtsf5INfZ46H4yN5-jEwTrai0Mdo_eH-7fZUzF_eXye3c0Lw1mdskZegYKFrEXFIcs31KjGccqco0xQahamkqBUWcsSoKohOwNQRKmGCOb4GF3t_26C_9zamPTKbwcdUbMcRr7igmXqek-Z4GMM1ulNaDsIO02JHtLTpT6kl9mbPRtNm2Cw_T_4y4c_UG-yqV-3B32O</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2507785342</pqid></control><display><type>article</type><title>Symmetries, constants of the motion, and reduction of mechanical systems with external forces</title><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><source>AIP Journals (American Institute of Physics)</source><creator>de León, Manuel ; Lainz, Manuel ; López-Gordón, Asier</creator><creatorcontrib>de León, Manuel ; Lainz, Manuel ; López-Gordón, Asier</creatorcontrib><description>This paper is devoted to the study of mechanical systems subjected to external forces in the framework of symplectic geometry. We obtain Noether’s theorem for Lagrangian systems with external forces, among other results regarding symmetries and conserved quantities. We particularize our results for the so-called Rayleigh dissipation, i.e., external forces that are derived from a dissipation function, and illustrate them with some examples. Moreover, we present a theory for the reduction in Lagrangian systems subjected to external forces, which are invariant under the action of a Lie group.</description><identifier>ISSN: 0022-2488</identifier><identifier>EISSN: 1089-7658</identifier><identifier>DOI: 10.1063/5.0045073</identifier><identifier>CODEN: JMAPAQ</identifier><language>eng</language><publisher>New York: American Institute of Physics</publisher><subject>Lie groups ; Mechanical systems ; Physics ; Reduction</subject><ispartof>Journal of mathematical physics, 2021-04, Vol.62 (4)</ispartof><rights>Author(s)</rights><rights>2021 Author(s). Published under license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c327t-7636a9ab87463a450c1c9df312ff12411cbc68a995785aa67a089aa9099d042f3</citedby><cites>FETCH-LOGICAL-c327t-7636a9ab87463a450c1c9df312ff12411cbc68a995785aa67a089aa9099d042f3</cites><orcidid>0000-0002-9620-9647 ; 0000-0002-2368-5853 ; 0000-0002-8028-2348</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jmp/article-lookup/doi/10.1063/5.0045073$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,780,782,784,795,27924,27925,76383</link.rule.ids></links><search><creatorcontrib>de León, Manuel</creatorcontrib><creatorcontrib>Lainz, Manuel</creatorcontrib><creatorcontrib>López-Gordón, Asier</creatorcontrib><title>Symmetries, constants of the motion, and reduction of mechanical systems with external forces</title><title>Journal of mathematical physics</title><description>This paper is devoted to the study of mechanical systems subjected to external forces in the framework of symplectic geometry. We obtain Noether’s theorem for Lagrangian systems with external forces, among other results regarding symmetries and conserved quantities. We particularize our results for the so-called Rayleigh dissipation, i.e., external forces that are derived from a dissipation function, and illustrate them with some examples. Moreover, we present a theory for the reduction in Lagrangian systems subjected to external forces, which are invariant under the action of a Lie group.</description><subject>Lie groups</subject><subject>Mechanical systems</subject><subject>Physics</subject><subject>Reduction</subject><issn>0022-2488</issn><issn>1089-7658</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqdkE1LAzEQhoMoWKsH_0HAk9Kt-drd5CjFLyh4UI8SptmEbuluapKq_fdmacG7p2Fmnhne90XokpIpJRW_LaeEiJLU_AiNKJGqqKtSHqMRIYwVTEh5is5iXBFCqRRihD5ed11nU2htnGDj-5igTxF7h9PS4s6n1vcTDH2Dg222ZmiHZWfNEvrWwBrHXUy2i_i7TUtsf5INfZ46H4yN5-jEwTrai0Mdo_eH-7fZUzF_eXye3c0Lw1mdskZegYKFrEXFIcs31KjGccqco0xQahamkqBUWcsSoKohOwNQRKmGCOb4GF3t_26C_9zamPTKbwcdUbMcRr7igmXqek-Z4GMM1ulNaDsIO02JHtLTpT6kl9mbPRtNm2Cw_T_4y4c_UG-yqV-3B32O</recordid><startdate>20210401</startdate><enddate>20210401</enddate><creator>de León, Manuel</creator><creator>Lainz, Manuel</creator><creator>López-Gordón, Asier</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>JQ2</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-9620-9647</orcidid><orcidid>https://orcid.org/0000-0002-2368-5853</orcidid><orcidid>https://orcid.org/0000-0002-8028-2348</orcidid></search><sort><creationdate>20210401</creationdate><title>Symmetries, constants of the motion, and reduction of mechanical systems with external forces</title><author>de León, Manuel ; Lainz, Manuel ; López-Gordón, Asier</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c327t-7636a9ab87463a450c1c9df312ff12411cbc68a995785aa67a089aa9099d042f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Lie groups</topic><topic>Mechanical systems</topic><topic>Physics</topic><topic>Reduction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>de León, Manuel</creatorcontrib><creatorcontrib>Lainz, Manuel</creatorcontrib><creatorcontrib>López-Gordón, Asier</creatorcontrib><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of mathematical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>de León, Manuel</au><au>Lainz, Manuel</au><au>López-Gordón, Asier</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Symmetries, constants of the motion, and reduction of mechanical systems with external forces</atitle><jtitle>Journal of mathematical physics</jtitle><date>2021-04-01</date><risdate>2021</risdate><volume>62</volume><issue>4</issue><issn>0022-2488</issn><eissn>1089-7658</eissn><coden>JMAPAQ</coden><abstract>This paper is devoted to the study of mechanical systems subjected to external forces in the framework of symplectic geometry. We obtain Noether’s theorem for Lagrangian systems with external forces, among other results regarding symmetries and conserved quantities. We particularize our results for the so-called Rayleigh dissipation, i.e., external forces that are derived from a dissipation function, and illustrate them with some examples. Moreover, we present a theory for the reduction in Lagrangian systems subjected to external forces, which are invariant under the action of a Lie group.</abstract><cop>New York</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0045073</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-9620-9647</orcidid><orcidid>https://orcid.org/0000-0002-2368-5853</orcidid><orcidid>https://orcid.org/0000-0002-8028-2348</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0022-2488
ispartof Journal of mathematical physics, 2021-04, Vol.62 (4)
issn 0022-2488
1089-7658
language eng
recordid cdi_scitation_primary_10_1063_5_0045073
source American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list); AIP Journals (American Institute of Physics)
subjects Lie groups
Mechanical systems
Physics
Reduction
title Symmetries, constants of the motion, and reduction of mechanical systems with external forces
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T23%3A59%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Symmetries,%20constants%20of%20the%20motion,%20and%20reduction%20of%20mechanical%20systems%20with%20external%20forces&rft.jtitle=Journal%20of%20mathematical%20physics&rft.au=de%20Le%C3%B3n,%20Manuel&rft.date=2021-04-01&rft.volume=62&rft.issue=4&rft.issn=0022-2488&rft.eissn=1089-7658&rft.coden=JMAPAQ&rft_id=info:doi/10.1063/5.0045073&rft_dat=%3Cproquest_scita%3E2507785342%3C/proquest_scita%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c327t-7636a9ab87463a450c1c9df312ff12411cbc68a995785aa67a089aa9099d042f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2507785342&rft_id=info:pmid/&rfr_iscdi=true