Loading…
Dynamic and weak electric double layers in ultrathin nanopores
The unique properties of aqueous electrolytes in ultrathin nanopores have drawn a great deal of attention in a variety of applications, such as power generation, water desalination, and disease diagnosis. Inside the nanopore, at the interface, properties of ions differ from those predicted by the cl...
Saved in:
Published in: | The Journal of chemical physics 2021-04, Vol.154 (13), p.134703-134703 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The unique properties of aqueous electrolytes in ultrathin nanopores have drawn a great deal of attention in a variety of applications, such as power generation, water desalination, and disease diagnosis. Inside the nanopore, at the interface, properties of ions differ from those predicted by the classical ionic layering models (e.g., Gouy–Chapman electric double layer) when the thickness of the nanopore approaches the size of a single atom (e.g., nanopores in a single-layer graphene membrane). Here, using extensive molecular dynamics simulations, the structure and dynamics of aqueous ions inside nanopores are studied for different thicknesses, diameters, and surface charge densities of carbon-based nanopores [ultrathin graphene and finite-thickness carbon nanotubes (CNTs)]. The ion concentration and diffusion coefficient in ultrathin nanopores show no indication of the formation of a Stern layer (an immobile counter-ionic layer) as the counter-ions and nanopore atoms are weakly correlated in time compared to the strong correlation observed in thick nanopores. The weak correlation observed in ultrathin nanopores is indicative of a weak adsorption of counter-ions onto the surface compared to that of thick pores. The vanishing counter-ion adsorption (ion–wall correlation) in ultrathin nanopores leads to several orders of magnitude shorter ionic residence times (picoseconds) compared to the residence times in thick CNTs (seconds). The results of this study will help better understand the structure and dynamics of aqueous ions in ultrathin nanopores. |
---|---|
ISSN: | 0021-9606 1089-7690 |
DOI: | 10.1063/5.0048011 |