Loading…
A real-time flow forecasting with deep convolutional generative adversarial network: Application to flooding event in Denmark
Real-time flood forecasting is crucial for supporting emergency responses to inundation-prone regions. Due to uncertainties in the future (e.g., meteorological conditions and model parameter inputs), it is challenging to make accurate forecasts of spatiotemporal floods. In this paper, a real-time pr...
Saved in:
Published in: | Physics of fluids (1994) 2021-05, Vol.33 (5) |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Real-time flood forecasting is crucial for supporting emergency responses to inundation-prone regions. Due to uncertainties in the future (e.g., meteorological conditions and model parameter inputs), it is challenging to make accurate forecasts of spatiotemporal floods. In this paper, a real-time predictive deep convolutional generative adversarial network (DCGAN) is developed for flooding forecasting. The proposed methodology consists of a two-stage process: (1) dynamic flow learning and (2) real-time forecasting. In dynamic flow learning, the deep convolutional neural networks are trained to capture the underlying flow patterns of spatiotemporal flow fields. In real-time forecasting, the DCGAN adopts a cascade predictive procedure. The last one-time step-ahead forecast from the DCGAN can act as a new input for the next time step-ahead forecast, which forms a long lead-time forecast in a recursive way. The model capability is assessed using a 100-year return period extreme flood event occurred in Greve, Denmark. The results indicate that the predictive fluid flows from the DCGAN and the high fidelity model are in a good agreement (the correlation coefficient
≥
97
% and the mean absolute error
≤
0.008
m) for a lead-900 time step forecast. This is an important step toward real-time flow forecasting although further evaluation of the DCGAN performance is required in complex realistic cases in the future. |
---|---|
ISSN: | 1070-6631 1089-7666 |
DOI: | 10.1063/5.0051213 |