Loading…

Time evolution of ML-MCTDH wavefunctions. I. Gauge conditions, basis functions, and singularities

We derive a family of equations-of-motion (EOMs) for evolving multi-layer multiconfiguration time-dependent Hartree (ML-MCTDH) wavefunctions that, unlike the standard ML-MCTDH EOMs, never require the evaluation of the inverse of singular matrices. All members of this family of EOMs make use of alter...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of chemical physics 2021-11, Vol.155 (17), p.174108-174108
Main Authors: Lindoy, Lachlan P., Kloss, Benedikt, Reichman, David R.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We derive a family of equations-of-motion (EOMs) for evolving multi-layer multiconfiguration time-dependent Hartree (ML-MCTDH) wavefunctions that, unlike the standard ML-MCTDH EOMs, never require the evaluation of the inverse of singular matrices. All members of this family of EOMs make use of alternative static gauge conditions than those used for standard ML-MCTDH. These alternative conditions result in an expansion of the wavefunction in terms of a set of potentially arbitrary orthonormal functions, rather than in terms of a set of non-orthonormal and potentially linearly dependent functions, as is the case for standard ML-MCTDH. We show that the EOMs used in the projector splitting integrator (PSI) and the invariant EOM approaches are two special cases of this family obtained from different choices for the dynamic gauge condition, with the invariant EOMs making use of a choice that introduces potentially unbounded operators into the EOMs. As a consequence, all arguments for the existence of parallelizable integration schemes for the invariant EOMs can also be applied to the PSI EOMs.
ISSN:0021-9606
1089-7690
DOI:10.1063/5.0070042