Loading…
Time evolution of ML-MCTDH wavefunctions. I. Gauge conditions, basis functions, and singularities
We derive a family of equations-of-motion (EOMs) for evolving multi-layer multiconfiguration time-dependent Hartree (ML-MCTDH) wavefunctions that, unlike the standard ML-MCTDH EOMs, never require the evaluation of the inverse of singular matrices. All members of this family of EOMs make use of alter...
Saved in:
Published in: | The Journal of chemical physics 2021-11, Vol.155 (17), p.174108-174108 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c387t-b0f2c48aed5dac96468c2e6f9d012426acb66cb62e32d67b62d285fa1cb1fed73 |
---|---|
cites | cdi_FETCH-LOGICAL-c387t-b0f2c48aed5dac96468c2e6f9d012426acb66cb62e32d67b62d285fa1cb1fed73 |
container_end_page | 174108 |
container_issue | 17 |
container_start_page | 174108 |
container_title | The Journal of chemical physics |
container_volume | 155 |
creator | Lindoy, Lachlan P. Kloss, Benedikt Reichman, David R. |
description | We derive a family of equations-of-motion (EOMs) for evolving multi-layer multiconfiguration time-dependent Hartree (ML-MCTDH) wavefunctions that, unlike the standard ML-MCTDH EOMs, never require the evaluation of the inverse of singular matrices. All members of this family of EOMs make use of alternative static gauge conditions than those used for standard ML-MCTDH. These alternative conditions result in an expansion of the wavefunction in terms of a set of potentially arbitrary orthonormal functions, rather than in terms of a set of non-orthonormal and potentially linearly dependent functions, as is the case for standard ML-MCTDH. We show that the EOMs used in the projector splitting integrator (PSI) and the invariant EOM approaches are two special cases of this family obtained from different choices for the dynamic gauge condition, with the invariant EOMs making use of a choice that introduces potentially unbounded operators into the EOMs. As a consequence, all arguments for the existence of parallelizable integration schemes for the invariant EOMs can also be applied to the PSI EOMs. |
doi_str_mv | 10.1063/5.0070042 |
format | article |
fullrecord | <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1063_5_0070042</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2593322200</sourcerecordid><originalsourceid>FETCH-LOGICAL-c387t-b0f2c48aed5dac96468c2e6f9d012426acb66cb62e32d67b62d285fa1cb1fed73</originalsourceid><addsrcrecordid>eNp90c1LwzAUAPAgCs7pwf8g6EVlrS9pm7ZHmboNNrzMc8jyMTO6ZjbtxP_e1o0JCh5CwsuPx_tA6JJASIBF90kIkALE9Aj1CGR5kLIcjlEPgJIgZ8BO0Zn3KwAgKY17SMztWmO9dUVTW1diZ_BsGsyG88cx_hBbbZpSdh8-xJMQj0Sz1Fi6Utnv4AAvhLceH9QAi1Jhb8tlU4iqRdqfoxMjCq8v9ncfvT4_zYfjYPoymgwfpoGMsrQOFmCojDOhVaKEzFnMMkk1M7kCQmPKhFww1h6qI6pY2j4UzRIjiFwQo1Ua9dHVLq_zteVe2lrLt7bUUsuak4xmjHboZoc2lXtvtK_52nqpi0KU2jWe0yRPCMmTpKPXv-jKNVXZttCpKKKUArTqdqdk5byvtOGbyq5F9ckJ8G4jPOH7jbT2bme74kQ3rwPeuuoH8o0y_-G_mb8AoYuYUw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2593322200</pqid></control><display><type>article</type><title>Time evolution of ML-MCTDH wavefunctions. I. Gauge conditions, basis functions, and singularities</title><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><source>AIP - American Institute of Physics</source><creator>Lindoy, Lachlan P. ; Kloss, Benedikt ; Reichman, David R.</creator><creatorcontrib>Lindoy, Lachlan P. ; Kloss, Benedikt ; Reichman, David R.</creatorcontrib><description>We derive a family of equations-of-motion (EOMs) for evolving multi-layer multiconfiguration time-dependent Hartree (ML-MCTDH) wavefunctions that, unlike the standard ML-MCTDH EOMs, never require the evaluation of the inverse of singular matrices. All members of this family of EOMs make use of alternative static gauge conditions than those used for standard ML-MCTDH. These alternative conditions result in an expansion of the wavefunction in terms of a set of potentially arbitrary orthonormal functions, rather than in terms of a set of non-orthonormal and potentially linearly dependent functions, as is the case for standard ML-MCTDH. We show that the EOMs used in the projector splitting integrator (PSI) and the invariant EOM approaches are two special cases of this family obtained from different choices for the dynamic gauge condition, with the invariant EOMs making use of a choice that introduces potentially unbounded operators into the EOMs. As a consequence, all arguments for the existence of parallelizable integration schemes for the invariant EOMs can also be applied to the PSI EOMs.</description><identifier>ISSN: 0021-9606</identifier><identifier>EISSN: 1089-7690</identifier><identifier>DOI: 10.1063/5.0070042</identifier><identifier>CODEN: JCPSA6</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Basis functions ; Invariants ; Multilayers ; Operators (mathematics) ; Orthonormal functions ; Physics ; Singularity (mathematics) ; Time dependence ; Wave functions</subject><ispartof>The Journal of chemical physics, 2021-11, Vol.155 (17), p.174108-174108</ispartof><rights>Author(s)</rights><rights>2021 Author(s). Published under an exclusive license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c387t-b0f2c48aed5dac96468c2e6f9d012426acb66cb62e32d67b62d285fa1cb1fed73</citedby><cites>FETCH-LOGICAL-c387t-b0f2c48aed5dac96468c2e6f9d012426acb66cb62e32d67b62d285fa1cb1fed73</cites><orcidid>0000-0002-5265-5637 ; 0000-0003-2492-8658 ; 0000-0002-1888-6490 ; 0000000324928658 ; 0000000252655637 ; 0000000218886490</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jcp/article-lookup/doi/10.1063/5.0070042$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>230,314,780,782,784,795,885,27924,27925,76383</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1828627$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Lindoy, Lachlan P.</creatorcontrib><creatorcontrib>Kloss, Benedikt</creatorcontrib><creatorcontrib>Reichman, David R.</creatorcontrib><title>Time evolution of ML-MCTDH wavefunctions. I. Gauge conditions, basis functions, and singularities</title><title>The Journal of chemical physics</title><description>We derive a family of equations-of-motion (EOMs) for evolving multi-layer multiconfiguration time-dependent Hartree (ML-MCTDH) wavefunctions that, unlike the standard ML-MCTDH EOMs, never require the evaluation of the inverse of singular matrices. All members of this family of EOMs make use of alternative static gauge conditions than those used for standard ML-MCTDH. These alternative conditions result in an expansion of the wavefunction in terms of a set of potentially arbitrary orthonormal functions, rather than in terms of a set of non-orthonormal and potentially linearly dependent functions, as is the case for standard ML-MCTDH. We show that the EOMs used in the projector splitting integrator (PSI) and the invariant EOM approaches are two special cases of this family obtained from different choices for the dynamic gauge condition, with the invariant EOMs making use of a choice that introduces potentially unbounded operators into the EOMs. As a consequence, all arguments for the existence of parallelizable integration schemes for the invariant EOMs can also be applied to the PSI EOMs.</description><subject>Basis functions</subject><subject>Invariants</subject><subject>Multilayers</subject><subject>Operators (mathematics)</subject><subject>Orthonormal functions</subject><subject>Physics</subject><subject>Singularity (mathematics)</subject><subject>Time dependence</subject><subject>Wave functions</subject><issn>0021-9606</issn><issn>1089-7690</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp90c1LwzAUAPAgCs7pwf8g6EVlrS9pm7ZHmboNNrzMc8jyMTO6ZjbtxP_e1o0JCh5CwsuPx_tA6JJASIBF90kIkALE9Aj1CGR5kLIcjlEPgJIgZ8BO0Zn3KwAgKY17SMztWmO9dUVTW1diZ_BsGsyG88cx_hBbbZpSdh8-xJMQj0Sz1Fi6Utnv4AAvhLceH9QAi1Jhb8tlU4iqRdqfoxMjCq8v9ncfvT4_zYfjYPoymgwfpoGMsrQOFmCojDOhVaKEzFnMMkk1M7kCQmPKhFww1h6qI6pY2j4UzRIjiFwQo1Ua9dHVLq_zteVe2lrLt7bUUsuak4xmjHboZoc2lXtvtK_52nqpi0KU2jWe0yRPCMmTpKPXv-jKNVXZttCpKKKUArTqdqdk5byvtOGbyq5F9ckJ8G4jPOH7jbT2bme74kQ3rwPeuuoH8o0y_-G_mb8AoYuYUw</recordid><startdate>20211107</startdate><enddate>20211107</enddate><creator>Lindoy, Lachlan P.</creator><creator>Kloss, Benedikt</creator><creator>Reichman, David R.</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-5265-5637</orcidid><orcidid>https://orcid.org/0000-0003-2492-8658</orcidid><orcidid>https://orcid.org/0000-0002-1888-6490</orcidid><orcidid>https://orcid.org/0000000324928658</orcidid><orcidid>https://orcid.org/0000000252655637</orcidid><orcidid>https://orcid.org/0000000218886490</orcidid></search><sort><creationdate>20211107</creationdate><title>Time evolution of ML-MCTDH wavefunctions. I. Gauge conditions, basis functions, and singularities</title><author>Lindoy, Lachlan P. ; Kloss, Benedikt ; Reichman, David R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c387t-b0f2c48aed5dac96468c2e6f9d012426acb66cb62e32d67b62d285fa1cb1fed73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Basis functions</topic><topic>Invariants</topic><topic>Multilayers</topic><topic>Operators (mathematics)</topic><topic>Orthonormal functions</topic><topic>Physics</topic><topic>Singularity (mathematics)</topic><topic>Time dependence</topic><topic>Wave functions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lindoy, Lachlan P.</creatorcontrib><creatorcontrib>Kloss, Benedikt</creatorcontrib><creatorcontrib>Reichman, David R.</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><jtitle>The Journal of chemical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lindoy, Lachlan P.</au><au>Kloss, Benedikt</au><au>Reichman, David R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Time evolution of ML-MCTDH wavefunctions. I. Gauge conditions, basis functions, and singularities</atitle><jtitle>The Journal of chemical physics</jtitle><date>2021-11-07</date><risdate>2021</risdate><volume>155</volume><issue>17</issue><spage>174108</spage><epage>174108</epage><pages>174108-174108</pages><issn>0021-9606</issn><eissn>1089-7690</eissn><coden>JCPSA6</coden><abstract>We derive a family of equations-of-motion (EOMs) for evolving multi-layer multiconfiguration time-dependent Hartree (ML-MCTDH) wavefunctions that, unlike the standard ML-MCTDH EOMs, never require the evaluation of the inverse of singular matrices. All members of this family of EOMs make use of alternative static gauge conditions than those used for standard ML-MCTDH. These alternative conditions result in an expansion of the wavefunction in terms of a set of potentially arbitrary orthonormal functions, rather than in terms of a set of non-orthonormal and potentially linearly dependent functions, as is the case for standard ML-MCTDH. We show that the EOMs used in the projector splitting integrator (PSI) and the invariant EOM approaches are two special cases of this family obtained from different choices for the dynamic gauge condition, with the invariant EOMs making use of a choice that introduces potentially unbounded operators into the EOMs. As a consequence, all arguments for the existence of parallelizable integration schemes for the invariant EOMs can also be applied to the PSI EOMs.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0070042</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-5265-5637</orcidid><orcidid>https://orcid.org/0000-0003-2492-8658</orcidid><orcidid>https://orcid.org/0000-0002-1888-6490</orcidid><orcidid>https://orcid.org/0000000324928658</orcidid><orcidid>https://orcid.org/0000000252655637</orcidid><orcidid>https://orcid.org/0000000218886490</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9606 |
ispartof | The Journal of chemical physics, 2021-11, Vol.155 (17), p.174108-174108 |
issn | 0021-9606 1089-7690 |
language | eng |
recordid | cdi_scitation_primary_10_1063_5_0070042 |
source | American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list); AIP - American Institute of Physics |
subjects | Basis functions Invariants Multilayers Operators (mathematics) Orthonormal functions Physics Singularity (mathematics) Time dependence Wave functions |
title | Time evolution of ML-MCTDH wavefunctions. I. Gauge conditions, basis functions, and singularities |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T14%3A15%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Time%20evolution%20of%20ML-MCTDH%20wavefunctions.%20I.%20Gauge%20conditions,%20basis%20functions,%20and%20singularities&rft.jtitle=The%20Journal%20of%20chemical%20physics&rft.au=Lindoy,%20Lachlan%20P.&rft.date=2021-11-07&rft.volume=155&rft.issue=17&rft.spage=174108&rft.epage=174108&rft.pages=174108-174108&rft.issn=0021-9606&rft.eissn=1089-7690&rft.coden=JCPSA6&rft_id=info:doi/10.1063/5.0070042&rft_dat=%3Cproquest_scita%3E2593322200%3C/proquest_scita%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c387t-b0f2c48aed5dac96468c2e6f9d012426acb66cb62e32d67b62d285fa1cb1fed73%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2593322200&rft_id=info:pmid/&rfr_iscdi=true |