Loading…

Time evolution of ML-MCTDH wavefunctions. I. Gauge conditions, basis functions, and singularities

We derive a family of equations-of-motion (EOMs) for evolving multi-layer multiconfiguration time-dependent Hartree (ML-MCTDH) wavefunctions that, unlike the standard ML-MCTDH EOMs, never require the evaluation of the inverse of singular matrices. All members of this family of EOMs make use of alter...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of chemical physics 2021-11, Vol.155 (17), p.174108-174108
Main Authors: Lindoy, Lachlan P., Kloss, Benedikt, Reichman, David R.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c387t-b0f2c48aed5dac96468c2e6f9d012426acb66cb62e32d67b62d285fa1cb1fed73
cites cdi_FETCH-LOGICAL-c387t-b0f2c48aed5dac96468c2e6f9d012426acb66cb62e32d67b62d285fa1cb1fed73
container_end_page 174108
container_issue 17
container_start_page 174108
container_title The Journal of chemical physics
container_volume 155
creator Lindoy, Lachlan P.
Kloss, Benedikt
Reichman, David R.
description We derive a family of equations-of-motion (EOMs) for evolving multi-layer multiconfiguration time-dependent Hartree (ML-MCTDH) wavefunctions that, unlike the standard ML-MCTDH EOMs, never require the evaluation of the inverse of singular matrices. All members of this family of EOMs make use of alternative static gauge conditions than those used for standard ML-MCTDH. These alternative conditions result in an expansion of the wavefunction in terms of a set of potentially arbitrary orthonormal functions, rather than in terms of a set of non-orthonormal and potentially linearly dependent functions, as is the case for standard ML-MCTDH. We show that the EOMs used in the projector splitting integrator (PSI) and the invariant EOM approaches are two special cases of this family obtained from different choices for the dynamic gauge condition, with the invariant EOMs making use of a choice that introduces potentially unbounded operators into the EOMs. As a consequence, all arguments for the existence of parallelizable integration schemes for the invariant EOMs can also be applied to the PSI EOMs.
doi_str_mv 10.1063/5.0070042
format article
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1063_5_0070042</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2593322200</sourcerecordid><originalsourceid>FETCH-LOGICAL-c387t-b0f2c48aed5dac96468c2e6f9d012426acb66cb62e32d67b62d285fa1cb1fed73</originalsourceid><addsrcrecordid>eNp90c1LwzAUAPAgCs7pwf8g6EVlrS9pm7ZHmboNNrzMc8jyMTO6ZjbtxP_e1o0JCh5CwsuPx_tA6JJASIBF90kIkALE9Aj1CGR5kLIcjlEPgJIgZ8BO0Zn3KwAgKY17SMztWmO9dUVTW1diZ_BsGsyG88cx_hBbbZpSdh8-xJMQj0Sz1Fi6Utnv4AAvhLceH9QAi1Jhb8tlU4iqRdqfoxMjCq8v9ncfvT4_zYfjYPoymgwfpoGMsrQOFmCojDOhVaKEzFnMMkk1M7kCQmPKhFww1h6qI6pY2j4UzRIjiFwQo1Ua9dHVLq_zteVe2lrLt7bUUsuak4xmjHboZoc2lXtvtK_52nqpi0KU2jWe0yRPCMmTpKPXv-jKNVXZttCpKKKUArTqdqdk5byvtOGbyq5F9ckJ8G4jPOH7jbT2bme74kQ3rwPeuuoH8o0y_-G_mb8AoYuYUw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2593322200</pqid></control><display><type>article</type><title>Time evolution of ML-MCTDH wavefunctions. I. Gauge conditions, basis functions, and singularities</title><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><source>AIP - American Institute of Physics</source><creator>Lindoy, Lachlan P. ; Kloss, Benedikt ; Reichman, David R.</creator><creatorcontrib>Lindoy, Lachlan P. ; Kloss, Benedikt ; Reichman, David R.</creatorcontrib><description>We derive a family of equations-of-motion (EOMs) for evolving multi-layer multiconfiguration time-dependent Hartree (ML-MCTDH) wavefunctions that, unlike the standard ML-MCTDH EOMs, never require the evaluation of the inverse of singular matrices. All members of this family of EOMs make use of alternative static gauge conditions than those used for standard ML-MCTDH. These alternative conditions result in an expansion of the wavefunction in terms of a set of potentially arbitrary orthonormal functions, rather than in terms of a set of non-orthonormal and potentially linearly dependent functions, as is the case for standard ML-MCTDH. We show that the EOMs used in the projector splitting integrator (PSI) and the invariant EOM approaches are two special cases of this family obtained from different choices for the dynamic gauge condition, with the invariant EOMs making use of a choice that introduces potentially unbounded operators into the EOMs. As a consequence, all arguments for the existence of parallelizable integration schemes for the invariant EOMs can also be applied to the PSI EOMs.</description><identifier>ISSN: 0021-9606</identifier><identifier>EISSN: 1089-7690</identifier><identifier>DOI: 10.1063/5.0070042</identifier><identifier>CODEN: JCPSA6</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Basis functions ; Invariants ; Multilayers ; Operators (mathematics) ; Orthonormal functions ; Physics ; Singularity (mathematics) ; Time dependence ; Wave functions</subject><ispartof>The Journal of chemical physics, 2021-11, Vol.155 (17), p.174108-174108</ispartof><rights>Author(s)</rights><rights>2021 Author(s). Published under an exclusive license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c387t-b0f2c48aed5dac96468c2e6f9d012426acb66cb62e32d67b62d285fa1cb1fed73</citedby><cites>FETCH-LOGICAL-c387t-b0f2c48aed5dac96468c2e6f9d012426acb66cb62e32d67b62d285fa1cb1fed73</cites><orcidid>0000-0002-5265-5637 ; 0000-0003-2492-8658 ; 0000-0002-1888-6490 ; 0000000324928658 ; 0000000252655637 ; 0000000218886490</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jcp/article-lookup/doi/10.1063/5.0070042$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>230,314,780,782,784,795,885,27924,27925,76383</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1828627$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Lindoy, Lachlan P.</creatorcontrib><creatorcontrib>Kloss, Benedikt</creatorcontrib><creatorcontrib>Reichman, David R.</creatorcontrib><title>Time evolution of ML-MCTDH wavefunctions. I. Gauge conditions, basis functions, and singularities</title><title>The Journal of chemical physics</title><description>We derive a family of equations-of-motion (EOMs) for evolving multi-layer multiconfiguration time-dependent Hartree (ML-MCTDH) wavefunctions that, unlike the standard ML-MCTDH EOMs, never require the evaluation of the inverse of singular matrices. All members of this family of EOMs make use of alternative static gauge conditions than those used for standard ML-MCTDH. These alternative conditions result in an expansion of the wavefunction in terms of a set of potentially arbitrary orthonormal functions, rather than in terms of a set of non-orthonormal and potentially linearly dependent functions, as is the case for standard ML-MCTDH. We show that the EOMs used in the projector splitting integrator (PSI) and the invariant EOM approaches are two special cases of this family obtained from different choices for the dynamic gauge condition, with the invariant EOMs making use of a choice that introduces potentially unbounded operators into the EOMs. As a consequence, all arguments for the existence of parallelizable integration schemes for the invariant EOMs can also be applied to the PSI EOMs.</description><subject>Basis functions</subject><subject>Invariants</subject><subject>Multilayers</subject><subject>Operators (mathematics)</subject><subject>Orthonormal functions</subject><subject>Physics</subject><subject>Singularity (mathematics)</subject><subject>Time dependence</subject><subject>Wave functions</subject><issn>0021-9606</issn><issn>1089-7690</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp90c1LwzAUAPAgCs7pwf8g6EVlrS9pm7ZHmboNNrzMc8jyMTO6ZjbtxP_e1o0JCh5CwsuPx_tA6JJASIBF90kIkALE9Aj1CGR5kLIcjlEPgJIgZ8BO0Zn3KwAgKY17SMztWmO9dUVTW1diZ_BsGsyG88cx_hBbbZpSdh8-xJMQj0Sz1Fi6Utnv4AAvhLceH9QAi1Jhb8tlU4iqRdqfoxMjCq8v9ncfvT4_zYfjYPoymgwfpoGMsrQOFmCojDOhVaKEzFnMMkk1M7kCQmPKhFww1h6qI6pY2j4UzRIjiFwQo1Ua9dHVLq_zteVe2lrLt7bUUsuak4xmjHboZoc2lXtvtK_52nqpi0KU2jWe0yRPCMmTpKPXv-jKNVXZttCpKKKUArTqdqdk5byvtOGbyq5F9ckJ8G4jPOH7jbT2bme74kQ3rwPeuuoH8o0y_-G_mb8AoYuYUw</recordid><startdate>20211107</startdate><enddate>20211107</enddate><creator>Lindoy, Lachlan P.</creator><creator>Kloss, Benedikt</creator><creator>Reichman, David R.</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-5265-5637</orcidid><orcidid>https://orcid.org/0000-0003-2492-8658</orcidid><orcidid>https://orcid.org/0000-0002-1888-6490</orcidid><orcidid>https://orcid.org/0000000324928658</orcidid><orcidid>https://orcid.org/0000000252655637</orcidid><orcidid>https://orcid.org/0000000218886490</orcidid></search><sort><creationdate>20211107</creationdate><title>Time evolution of ML-MCTDH wavefunctions. I. Gauge conditions, basis functions, and singularities</title><author>Lindoy, Lachlan P. ; Kloss, Benedikt ; Reichman, David R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c387t-b0f2c48aed5dac96468c2e6f9d012426acb66cb62e32d67b62d285fa1cb1fed73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Basis functions</topic><topic>Invariants</topic><topic>Multilayers</topic><topic>Operators (mathematics)</topic><topic>Orthonormal functions</topic><topic>Physics</topic><topic>Singularity (mathematics)</topic><topic>Time dependence</topic><topic>Wave functions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lindoy, Lachlan P.</creatorcontrib><creatorcontrib>Kloss, Benedikt</creatorcontrib><creatorcontrib>Reichman, David R.</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><jtitle>The Journal of chemical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lindoy, Lachlan P.</au><au>Kloss, Benedikt</au><au>Reichman, David R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Time evolution of ML-MCTDH wavefunctions. I. Gauge conditions, basis functions, and singularities</atitle><jtitle>The Journal of chemical physics</jtitle><date>2021-11-07</date><risdate>2021</risdate><volume>155</volume><issue>17</issue><spage>174108</spage><epage>174108</epage><pages>174108-174108</pages><issn>0021-9606</issn><eissn>1089-7690</eissn><coden>JCPSA6</coden><abstract>We derive a family of equations-of-motion (EOMs) for evolving multi-layer multiconfiguration time-dependent Hartree (ML-MCTDH) wavefunctions that, unlike the standard ML-MCTDH EOMs, never require the evaluation of the inverse of singular matrices. All members of this family of EOMs make use of alternative static gauge conditions than those used for standard ML-MCTDH. These alternative conditions result in an expansion of the wavefunction in terms of a set of potentially arbitrary orthonormal functions, rather than in terms of a set of non-orthonormal and potentially linearly dependent functions, as is the case for standard ML-MCTDH. We show that the EOMs used in the projector splitting integrator (PSI) and the invariant EOM approaches are two special cases of this family obtained from different choices for the dynamic gauge condition, with the invariant EOMs making use of a choice that introduces potentially unbounded operators into the EOMs. As a consequence, all arguments for the existence of parallelizable integration schemes for the invariant EOMs can also be applied to the PSI EOMs.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0070042</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-5265-5637</orcidid><orcidid>https://orcid.org/0000-0003-2492-8658</orcidid><orcidid>https://orcid.org/0000-0002-1888-6490</orcidid><orcidid>https://orcid.org/0000000324928658</orcidid><orcidid>https://orcid.org/0000000252655637</orcidid><orcidid>https://orcid.org/0000000218886490</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0021-9606
ispartof The Journal of chemical physics, 2021-11, Vol.155 (17), p.174108-174108
issn 0021-9606
1089-7690
language eng
recordid cdi_scitation_primary_10_1063_5_0070042
source American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list); AIP - American Institute of Physics
subjects Basis functions
Invariants
Multilayers
Operators (mathematics)
Orthonormal functions
Physics
Singularity (mathematics)
Time dependence
Wave functions
title Time evolution of ML-MCTDH wavefunctions. I. Gauge conditions, basis functions, and singularities
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T14%3A15%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Time%20evolution%20of%20ML-MCTDH%20wavefunctions.%20I.%20Gauge%20conditions,%20basis%20functions,%20and%20singularities&rft.jtitle=The%20Journal%20of%20chemical%20physics&rft.au=Lindoy,%20Lachlan%20P.&rft.date=2021-11-07&rft.volume=155&rft.issue=17&rft.spage=174108&rft.epage=174108&rft.pages=174108-174108&rft.issn=0021-9606&rft.eissn=1089-7690&rft.coden=JCPSA6&rft_id=info:doi/10.1063/5.0070042&rft_dat=%3Cproquest_scita%3E2593322200%3C/proquest_scita%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c387t-b0f2c48aed5dac96468c2e6f9d012426acb66cb62e32d67b62d285fa1cb1fed73%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2593322200&rft_id=info:pmid/&rfr_iscdi=true