Loading…
2-edge dominating sets and 2- edge domination polynomials of lollipop (L3,m)
Let L3,m be the Lollipop graph with m+3 vertices and m + 3 edges. Let D2e(G, k) be the family of 2-edge dominating sets in G with size k. The polynomial D2e(G,x)=∑k=γ2e(G)|E(G)|d2e(G,k)xk is called the 2-edge domination polynomial of G. In this paper, we derive a recursive formula for d2e(L3,m, k)....
Saved in:
Published in: | AIP conference proceedings 2022-11, Vol.2516 (1) |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Let L3,m be the Lollipop graph with m+3 vertices and m + 3 edges. Let D2e(G, k) be the family of 2-edge dominating sets in G with size k. The polynomial D2e(G,x)=∑k=γ2e(G)|E(G)|d2e(G,k)xk is called the 2-edge domination polynomial of G. In this paper, we derive a recursive formula for d2e(L3,m, k). We use this recursive formula to establish the 2- edge domination polynomial, D2e(L3,mx)=∑k=[m+32]m+3d2e(L3,mk)xk, where d2e(L3,m, k) is the number of 2- edge 2 dominating sets of L3,m of size k and obtain some properties of this polynomial. |
---|---|
ISSN: | 0094-243X 1551-7616 |
DOI: | 10.1063/5.0109346 |