Loading…
L3,2,1 labelling of kalpataru graph
Let G = (V, E) be a graph. An L(3,2,1) labelling of G is a function f: V → ℕ ∪ {0} such that for every u, v ∈ V, |f(u) − f(v)| ≥ 3 if d(u, v) = 1, |f(u) − f(v)| ≥ 2 if d(u, v) = 2 and |f(u) − f(v)| ≥ 1 if d(u, v) = 3. Let ∈ ℕ, a k − L(3,2,1) labelling is a labelling L(3,2,1) where all labels are not...
Saved in:
Main Authors: | , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Let G = (V, E) be a graph. An L(3,2,1) labelling of G is a function f: V → ℕ ∪ {0} such that for every u, v ∈ V, |f(u) − f(v)| ≥ 3 if d(u, v) = 1, |f(u) − f(v)| ≥ 2 if d(u, v) = 2 and |f(u) − f(v)| ≥ 1 if d(u, v) = 3. Let ∈ ℕ, a k − L(3,2,1) labelling is a labelling L(3,2,1) where all labels are not greater than k. An L(3,2,1) number of G, denoted by λ3,2,1(G), is the smallest non-negative integer k such that G has a k − L(3,2,1) labelling. In this paper, we determine λ3,2,1 of kalpataru graphs. |
---|---|
ISSN: | 0094-243X 1551-7616 |
DOI: | 10.1063/5.0181005 |