Loading…

A stochastic precipitating quasi-geostrophic model

Efficient and effective modeling of complex systems, incorporating cloud physics and precipitation, is essential for accurate climate modeling and forecasting. However, simulating these systems is computationally demanding since microphysics has crucial contributions to the dynamics of moisture and...

Full description

Saved in:
Bibliographic Details
Published in:Physics of fluids (1994) 2024-11, Vol.36 (11)
Main Author: Smith, Leslie M.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Efficient and effective modeling of complex systems, incorporating cloud physics and precipitation, is essential for accurate climate modeling and forecasting. However, simulating these systems is computationally demanding since microphysics has crucial contributions to the dynamics of moisture and precipitation. In this paper, appropriate stochastic models are developed for the phase-transition dynamics of water, focusing on the precipitating quasi-geostrophic (PQG) model as a prototype. By treating the moisture, phase transitions, and latent heat release as integral components of the system, the PQG model constitutes a set of partial differential equations (PDEs) that involve Heaviside nonlinearities due to phase changes of water. Despite systematically characterizing the precipitation physics, expensive iterative algorithms are needed to find a PDE inversion at each numerical integration time step. As a crucial step toward building an effective stochastic model, a computationally efficient Markov jump process is designed to randomly simulate transitions between saturated and unsaturated states that avoids using the expensive iterative solver. The transition rates, which are deterministic, are derived from the physical fields, guaranteeing physical and statistical consistency with nature. Furthermore, to maintain the consistent spatial pattern of precipitation, the stochastic model incorporates an adaptive parameterization that automatically adjusts the transitions based on spatial information. Numerical tests show the stochastic model retains critical properties of the original PQG system while significantly reducing computational demands. It accurately captures observed precipitation patterns, including the spatial distribution and temporal variability of rainfall, alongside reproducing essential dynamic features such as potential vorticity fields and zonal mean flows.
ISSN:1070-6631
1089-7666
DOI:10.1063/5.0231366