Loading…

Ag polycrystal and monocrystal by high sensitivity-low energy ion scattering

Low energy ion scattering is a qualitative and quantitative surface analysis technique. Its supreme surface sensitivity and straightforward quantification (using a well-defined reference) make it a convenient tool for the study of surface composition and a useful method for surface characterization...

Full description

Saved in:
Bibliographic Details
Published in:Surface science spectra 2024-12, Vol.31 (2)
Main Authors: Staněk, Jan, Průša, Stanislav, Strapko, Tomáš, Šikola, Tomáš
Format: Article
Language:English
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Low energy ion scattering is a qualitative and quantitative surface analysis technique. Its supreme surface sensitivity and straightforward quantification (using a well-defined reference) make it a convenient tool for the study of surface composition and a useful method for surface characterization in cooperation with other surface analysis methods such as XPS and SIMS. Silver (100) monocrystal was analyzed by the primary beam of helium ions. The wide energy range from 1.0 to 4.5 keV covers three distinguished regions. On the low energy side, the charge exchange processes are dominated by Auger neutralization (AN), while collision-induced (CI) processes rule a high energy range. Both mechanisms are mixed in the intermediate region between 1.2 and 2.1 keV (for perpendicular incidence and 145° scattering geometry). The results can serve both as a reference and as an insight into neutralization probability changes (as dependence on primary energy). The neutralization strength is reflected by the characteristic velocity. It was evaluated for AN and CI regions to 0.75 × 105 and 0.38 × 105 ms−1, respectively. The CI reionization energy threshold is around 1700 eV for both Ag (100) and polycrystalline Ag. The reference measurement on polycrystalline copper relates the presented data to those received by other Qtac100 instruments with different sensitivities.
ISSN:1055-5269
1520-8575
DOI:10.1116/6.0003869