Loading…

An investigation of a new amorphous silicon electronic portal imaging device for transit dosimetry

The relationship between the pixel value and exit dose was investigated for a new commercially available amorphous silicon electronic portal imaging device. The pixel to dose mapping function was established to be linear for detector distances between 116.5 cm to 150 cm from the source, radiation fi...

Full description

Saved in:
Bibliographic Details
Published in:Medical physics (Lancaster) 2002-10, Vol.29 (10), p.2262-2268
Main Authors: Grein, Ellen E., Lee, Richard, Luchka, Kurt
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c3898-428e9f81efa76c10cad964173c8889a6da642bb6296a706e6570e9c37bb4948c3
cites cdi_FETCH-LOGICAL-c3898-428e9f81efa76c10cad964173c8889a6da642bb6296a706e6570e9c37bb4948c3
container_end_page 2268
container_issue 10
container_start_page 2262
container_title Medical physics (Lancaster)
container_volume 29
creator Grein, Ellen E.
Lee, Richard
Luchka, Kurt
description The relationship between the pixel value and exit dose was investigated for a new commercially available amorphous silicon electronic portal imaging device. The pixel to dose mapping function was established to be linear for detector distances between 116.5 cm to 150 cm from the source, radiation field sizes from 5×5  cm 2 to 20×20  cm 2 and beam energies of 6 to 18 MV. Coefficients in the mapping function were found to be dependent on beam energy and field size. Open and wedged field profiles measured with the device showed agreement to a maximum of 5% and 8%, respectively, as compared to film. A comparison of relative transmission measurements between the EPID and ion chamber indicate a maximum deviation of 6% and 2% at 6 and 18 MV, respectively, for an attenuator thickness of 21 cm and SDD⩾130 cm. It was found that accuracies of better than 1% could be obtained if detector position and field size specific fitting parameters were used to generate unique mapping functions for each configuration.
doi_str_mv 10.1118/1.1508108
format article
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1118_1_1508108</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>72637816</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3898-428e9f81efa76c10cad964173c8889a6da642bb6296a706e6570e9c37bb4948c3</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhoMo7vpx8A9IToJCddJ00-Qo4hcoetBzSdPpGmmbmnRX9t8b3YJe1lNg8vDMvC8hRwzOGWPygp2zGUgGcotM0yznSZaC2iZTAJUlaQazCdkL4R0ABJ_BLpmwOJQcYErKy47abolhsHM9WNdRV1NNO_ykunW-f3OLQINtrIlf2KAZvOusob3zg26obfXcdnNa4dIapLXzdPC6C3aglQu2xcGvDshOrZuAh-O7T15vrl-u7pKHp9v7q8uHxHCpZLxZoqolw1rnwjAwulIiYzk3UkqlRaVFlpalSJXQOQgUsxxQGZ6XZaYyafg-OVl7e-8-FjFR0dpgsGl0hzFFkaeC55KJCJ6uQeNdCB7rovcxiF8VDIrvQgtWjIVG9niULsoWq19ybDACyRr4tA2uNpuKx-dReLbmg7HDT-P_bt8IL53_I--rmn8BViaaaw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>72637816</pqid></control><display><type>article</type><title>An investigation of a new amorphous silicon electronic portal imaging device for transit dosimetry</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Grein, Ellen E. ; Lee, Richard ; Luchka, Kurt</creator><creatorcontrib>Grein, Ellen E. ; Lee, Richard ; Luchka, Kurt</creatorcontrib><description>The relationship between the pixel value and exit dose was investigated for a new commercially available amorphous silicon electronic portal imaging device. The pixel to dose mapping function was established to be linear for detector distances between 116.5 cm to 150 cm from the source, radiation field sizes from 5×5  cm 2 to 20×20  cm 2 and beam energies of 6 to 18 MV. Coefficients in the mapping function were found to be dependent on beam energy and field size. Open and wedged field profiles measured with the device showed agreement to a maximum of 5% and 8%, respectively, as compared to film. A comparison of relative transmission measurements between the EPID and ion chamber indicate a maximum deviation of 6% and 2% at 6 and 18 MV, respectively, for an attenuator thickness of 21 cm and SDD⩾130 cm. It was found that accuracies of better than 1% could be obtained if detector position and field size specific fitting parameters were used to generate unique mapping functions for each configuration.</description><identifier>ISSN: 0094-2405</identifier><identifier>EISSN: 2473-4209</identifier><identifier>DOI: 10.1118/1.1508108</identifier><identifier>PMID: 12408300</identifier><identifier>CODEN: MPHYA6</identifier><language>eng</language><publisher>United States: American Association of Physicists in Medicine</publisher><subject>amorphous semiconductors ; biomedical electronics ; biomedical imaging ; dosimetry ; Electromagnetic radiation detectors ; Field size ; Image guided radiation therapy ; Models, Statistical ; Particle beam detectors ; Phantoms, Imaging ; Photons ; Quality assurance equipment ; Radiation Oncology - instrumentation ; radiation therapy ; Radiation therapy equipment ; Radiometry - instrumentation ; Radiometry - methods ; Radiotherapy Dosage ; Radiotherapy Planning, Computer-Assisted ; Radiotherapy sources ; Radiotherapy, High-Energy ; Silicon ; Thin film devices ; Transmission measurement ; Verification</subject><ispartof>Medical physics (Lancaster), 2002-10, Vol.29 (10), p.2262-2268</ispartof><rights>American Association of Physicists in Medicine</rights><rights>2002 American Association of Physicists in Medicine</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3898-428e9f81efa76c10cad964173c8889a6da642bb6296a706e6570e9c37bb4948c3</citedby><cites>FETCH-LOGICAL-c3898-428e9f81efa76c10cad964173c8889a6da642bb6296a706e6570e9c37bb4948c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/12408300$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Grein, Ellen E.</creatorcontrib><creatorcontrib>Lee, Richard</creatorcontrib><creatorcontrib>Luchka, Kurt</creatorcontrib><title>An investigation of a new amorphous silicon electronic portal imaging device for transit dosimetry</title><title>Medical physics (Lancaster)</title><addtitle>Med Phys</addtitle><description>The relationship between the pixel value and exit dose was investigated for a new commercially available amorphous silicon electronic portal imaging device. The pixel to dose mapping function was established to be linear for detector distances between 116.5 cm to 150 cm from the source, radiation field sizes from 5×5  cm 2 to 20×20  cm 2 and beam energies of 6 to 18 MV. Coefficients in the mapping function were found to be dependent on beam energy and field size. Open and wedged field profiles measured with the device showed agreement to a maximum of 5% and 8%, respectively, as compared to film. A comparison of relative transmission measurements between the EPID and ion chamber indicate a maximum deviation of 6% and 2% at 6 and 18 MV, respectively, for an attenuator thickness of 21 cm and SDD⩾130 cm. It was found that accuracies of better than 1% could be obtained if detector position and field size specific fitting parameters were used to generate unique mapping functions for each configuration.</description><subject>amorphous semiconductors</subject><subject>biomedical electronics</subject><subject>biomedical imaging</subject><subject>dosimetry</subject><subject>Electromagnetic radiation detectors</subject><subject>Field size</subject><subject>Image guided radiation therapy</subject><subject>Models, Statistical</subject><subject>Particle beam detectors</subject><subject>Phantoms, Imaging</subject><subject>Photons</subject><subject>Quality assurance equipment</subject><subject>Radiation Oncology - instrumentation</subject><subject>radiation therapy</subject><subject>Radiation therapy equipment</subject><subject>Radiometry - instrumentation</subject><subject>Radiometry - methods</subject><subject>Radiotherapy Dosage</subject><subject>Radiotherapy Planning, Computer-Assisted</subject><subject>Radiotherapy sources</subject><subject>Radiotherapy, High-Energy</subject><subject>Silicon</subject><subject>Thin film devices</subject><subject>Transmission measurement</subject><subject>Verification</subject><issn>0094-2405</issn><issn>2473-4209</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LxDAQhoMo7vpx8A9IToJCddJ00-Qo4hcoetBzSdPpGmmbmnRX9t8b3YJe1lNg8vDMvC8hRwzOGWPygp2zGUgGcotM0yznSZaC2iZTAJUlaQazCdkL4R0ABJ_BLpmwOJQcYErKy47abolhsHM9WNdRV1NNO_ykunW-f3OLQINtrIlf2KAZvOusob3zg26obfXcdnNa4dIapLXzdPC6C3aglQu2xcGvDshOrZuAh-O7T15vrl-u7pKHp9v7q8uHxHCpZLxZoqolw1rnwjAwulIiYzk3UkqlRaVFlpalSJXQOQgUsxxQGZ6XZaYyafg-OVl7e-8-FjFR0dpgsGl0hzFFkaeC55KJCJ6uQeNdCB7rovcxiF8VDIrvQgtWjIVG9niULsoWq19ybDACyRr4tA2uNpuKx-dReLbmg7HDT-P_bt8IL53_I--rmn8BViaaaw</recordid><startdate>200210</startdate><enddate>200210</enddate><creator>Grein, Ellen E.</creator><creator>Lee, Richard</creator><creator>Luchka, Kurt</creator><general>American Association of Physicists in Medicine</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>200210</creationdate><title>An investigation of a new amorphous silicon electronic portal imaging device for transit dosimetry</title><author>Grein, Ellen E. ; Lee, Richard ; Luchka, Kurt</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3898-428e9f81efa76c10cad964173c8889a6da642bb6296a706e6570e9c37bb4948c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>amorphous semiconductors</topic><topic>biomedical electronics</topic><topic>biomedical imaging</topic><topic>dosimetry</topic><topic>Electromagnetic radiation detectors</topic><topic>Field size</topic><topic>Image guided radiation therapy</topic><topic>Models, Statistical</topic><topic>Particle beam detectors</topic><topic>Phantoms, Imaging</topic><topic>Photons</topic><topic>Quality assurance equipment</topic><topic>Radiation Oncology - instrumentation</topic><topic>radiation therapy</topic><topic>Radiation therapy equipment</topic><topic>Radiometry - instrumentation</topic><topic>Radiometry - methods</topic><topic>Radiotherapy Dosage</topic><topic>Radiotherapy Planning, Computer-Assisted</topic><topic>Radiotherapy sources</topic><topic>Radiotherapy, High-Energy</topic><topic>Silicon</topic><topic>Thin film devices</topic><topic>Transmission measurement</topic><topic>Verification</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Grein, Ellen E.</creatorcontrib><creatorcontrib>Lee, Richard</creatorcontrib><creatorcontrib>Luchka, Kurt</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Medical physics (Lancaster)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Grein, Ellen E.</au><au>Lee, Richard</au><au>Luchka, Kurt</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An investigation of a new amorphous silicon electronic portal imaging device for transit dosimetry</atitle><jtitle>Medical physics (Lancaster)</jtitle><addtitle>Med Phys</addtitle><date>2002-10</date><risdate>2002</risdate><volume>29</volume><issue>10</issue><spage>2262</spage><epage>2268</epage><pages>2262-2268</pages><issn>0094-2405</issn><eissn>2473-4209</eissn><coden>MPHYA6</coden><abstract>The relationship between the pixel value and exit dose was investigated for a new commercially available amorphous silicon electronic portal imaging device. The pixel to dose mapping function was established to be linear for detector distances between 116.5 cm to 150 cm from the source, radiation field sizes from 5×5  cm 2 to 20×20  cm 2 and beam energies of 6 to 18 MV. Coefficients in the mapping function were found to be dependent on beam energy and field size. Open and wedged field profiles measured with the device showed agreement to a maximum of 5% and 8%, respectively, as compared to film. A comparison of relative transmission measurements between the EPID and ion chamber indicate a maximum deviation of 6% and 2% at 6 and 18 MV, respectively, for an attenuator thickness of 21 cm and SDD⩾130 cm. It was found that accuracies of better than 1% could be obtained if detector position and field size specific fitting parameters were used to generate unique mapping functions for each configuration.</abstract><cop>United States</cop><pub>American Association of Physicists in Medicine</pub><pmid>12408300</pmid><doi>10.1118/1.1508108</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0094-2405
ispartof Medical physics (Lancaster), 2002-10, Vol.29 (10), p.2262-2268
issn 0094-2405
2473-4209
language eng
recordid cdi_scitation_primary_10_1118_1_1508108
source Wiley-Blackwell Read & Publish Collection
subjects amorphous semiconductors
biomedical electronics
biomedical imaging
dosimetry
Electromagnetic radiation detectors
Field size
Image guided radiation therapy
Models, Statistical
Particle beam detectors
Phantoms, Imaging
Photons
Quality assurance equipment
Radiation Oncology - instrumentation
radiation therapy
Radiation therapy equipment
Radiometry - instrumentation
Radiometry - methods
Radiotherapy Dosage
Radiotherapy Planning, Computer-Assisted
Radiotherapy sources
Radiotherapy, High-Energy
Silicon
Thin film devices
Transmission measurement
Verification
title An investigation of a new amorphous silicon electronic portal imaging device for transit dosimetry
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-17T00%3A39%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20investigation%20of%20a%20new%20amorphous%20silicon%20electronic%20portal%20imaging%20device%20for%20transit%20dosimetry&rft.jtitle=Medical%20physics%20(Lancaster)&rft.au=Grein,%20Ellen%20E.&rft.date=2002-10&rft.volume=29&rft.issue=10&rft.spage=2262&rft.epage=2268&rft.pages=2262-2268&rft.issn=0094-2405&rft.eissn=2473-4209&rft.coden=MPHYA6&rft_id=info:doi/10.1118/1.1508108&rft_dat=%3Cproquest_scita%3E72637816%3C/proquest_scita%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3898-428e9f81efa76c10cad964173c8889a6da642bb6296a706e6570e9c37bb4948c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=72637816&rft_id=info:pmid/12408300&rfr_iscdi=true