Loading…

Cone-beam CT with megavoltage beams and an amorphous silicon electronic portal imaging device: Potential for verification of radiotherapy of lung cancer

We investigate the potential of megavoltage (MV) cone-beam CT with an amorphous silicon electronic portal imaging device (EPID) as a tool for patient position verification and tumor/organ motion studies in radiation treatment of lung tumors. We acquire 25 to 200 projection images using a 22×29  cm E...

Full description

Saved in:
Bibliographic Details
Published in:Medical physics (Lancaster) 2002-12, Vol.29 (12), p.2913-2924
Main Authors: Ford, E. C., Chang, J., Mueller, K., Sidhu, K., Todor, D., Mageras, G., Yorke, E., Ling, C. C., Amols, H.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We investigate the potential of megavoltage (MV) cone-beam CT with an amorphous silicon electronic portal imaging device (EPID) as a tool for patient position verification and tumor/organ motion studies in radiation treatment of lung tumors. We acquire 25 to 200 projection images using a 22×29  cm EPID. The acquisition is automatic and requires 7 minutes for 100 projections; it can be synchronized with respiratory gating. From these images, volumetric reconstruction is accomplished with a filtered backprojection in the cone-beam geometry. Several important pre-reconstruction image corrections, such as detector sag, must be applied. Tests with a contrast phantom indicate that differences in electron density of 2% can be detected with 100 projections, 200 cGy total dose. The contrast-to-noise ratio improves as the number of projections is increased. With 50 projections (100 cGy), high contrast objects are visible, and as few as 25 projections yield images with discernible features. We identify a technique of acquiring projection images with conformal beam apertures, shaped by a multileaf collimator, to reduce the dose to surrounding normal tissue. Tests of this technique on an anthropomorphic phantom demonstrate that a gross tumor volume in the lung can be accurately localized in three dimensions with scans using 88 monitor units. As such, conformal megavoltage cone-beam CT can provide three-dimensional imaging of lung tumors and may be used, for example, in verifying respiratory gated treatments.
ISSN:0094-2405
2473-4209
DOI:10.1118/1.1517614