Loading…
Effects of internal resonances in the pitch glide of Chinese gongs
The framework of nonlinear normal modes gives a remarkable insight into the dynamics of nonlinear vibratory systems exhibiting distributed nonlinearities. In the case of Chinese opera gongs, geometrical nonlinearities lead to a pitch glide of several vibration modes in playing situation. This study...
Saved in:
Published in: | The Journal of the Acoustical Society of America 2018-07, Vol.144 (1), p.431-442 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The framework of nonlinear normal modes gives a remarkable insight into the dynamics of nonlinear vibratory systems exhibiting distributed nonlinearities. In the case of Chinese opera gongs, geometrical nonlinearities lead to a pitch glide of several vibration modes in playing situation. This study investigates the relationship between the nonlinear normal modes formalism and the ascendant pitch glide of the fundamental mode of a xiaoluo gong. In particular, the limits of a single nonlinear mode modeling for describing the pitch glide in playing situation are examined. For this purpose, the amplitude-frequency relationship (backbone curve) and the frequency-time dependency (pitch glide) of the fundamental nonlinear mode is measured with two excitation types, in free vibration regime: first, only the fundamental nonlinear mode is excited by an experimental appropriation method resorting to a phase-locked loop; second, all the nonlinear modes of the instrument are excited with a mallet impact (playing situation). The results show that a single nonlinear mode modeling fails at describing the pitch glide of the instrument when played because of the presence of 1:2 internal resonances implying the nonlinear fundamental mode and other nonlinear modes. Simulations of two nonlinear modes in 1:2 internal resonance confirm qualitatively the experimental results. |
---|---|
ISSN: | 0001-4966 1520-8524 |
DOI: | 10.1121/1.5038114 |