Loading…
Multiparameter performance monitoring of pulse amplitude modulation channels using convolutional neural networks
A designed visual geometry group (VGG)-based convolutional neural network (CNN) model with small computational cost and high accuracy is utilized to monitor pulse amplitude modulation-based intensity modulation and direct detection channel performance using eye diagram measurements. Experimental res...
Saved in:
Published in: | Advanced Photonics Nexus 2024-03, Vol.3 (2), p.026009-026009 |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | A designed visual geometry group (VGG)-based convolutional neural network (CNN) model with small computational cost and high accuracy is utilized to monitor pulse amplitude modulation-based intensity modulation and direct detection channel performance using eye diagram measurements. Experimental results show that the proposed technique can achieve a high accuracy in jointly monitoring modulation format, probabilistic shaping, roll-off factor, baud rate, optical signal-to-noise ratio, and chromatic dispersion. The designed VGG-based CNN model outperforms the other four traditional machine-learning methods in different scenarios. Furthermore, the multitask learning model combined with MobileNet CNN is designed to improve the flexibility of the network. Compared with the designed VGG-based CNN, the MobileNet-based MTL does not need to train all the classes, and it can simultaneously monitor single parameter or multiple parameters without sacrificing accuracy, indicating great potential in various monitoring scenarios. |
---|---|
ISSN: | 2791-1519 2791-1519 |
DOI: | 10.1117/1.APN.3.2.026009 |