Loading…

Evaluation of ceilometer attenuated backscattering coefficients for aerosol profile measurement

Aerosol observations with ceilometers have been made worldwide recently. To use ceilometer data to retrieve aerosol profiles, raw signals should be accurately converted to the attenuated backscattering coefficient. Hence, the calibration coefficient for the system constant has to be determined corre...

Full description

Saved in:
Bibliographic Details
Published in:Journal of applied remote sensing 2018-07, Vol.12 (4), p.042604-042604
Main Authors: Jin, Yoshitaka, Sugimoto, Nobuo, Shimizu, Atsushi, Nishizawa, Tomoaki, Kai, Kenji, Kawai, Kei, Yamazaki, Akihiro, Sakurai, Motoki, Wille, Holger
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Aerosol observations with ceilometers have been made worldwide recently. To use ceilometer data to retrieve aerosol profiles, raw signals should be accurately converted to the attenuated backscattering coefficient. Hence, the calibration coefficient for the system constant has to be determined correctly. We conducted a ceilometer-lidar comparative experiment to evaluate the Lufft CHM15k Nimbus product. The attenuated backscattering coefficient using CHM15k was smaller by a factor of 1.48 compared to that of lidar. The calibration coefficient should be periodically corrected using the ceilometer signal itself since lidar data are generally unavailable in the field observations. We recalibrated the product using both Rayleigh fitting and cloud attenuation methods. The correction factor, determined from the recalibration, was 15% (9%) smaller when using the Rayleigh fitting (cloud attenuation) method than the factor determined from lidar. Uncertainties from backscattering ratios at the reference height and the lidar ratio can cause systematic errors in the correction factor determined from the Rayleigh fitting method. Uncertainties due to the multiple scattering factor contribute to systematic errors for the cloud attenuation method. We propose a calibration method using depolarization ratios for future polarization-sensitive ceilometers, which can estimate the calibration coefficient without multiple scattering factors.
ISSN:1931-3195
1931-3195
DOI:10.1117/1.JRS.12.042604