Loading…

Memory gradient method for the minimization of functions

A new accelerated gradient method for finding the minimum of a function f(x) whose variables are unconstrained is investigated. The new algorithm can be stated as follows: \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{a...

Full description

Saved in:
Bibliographic Details
Main Authors: Miele, A., Cantrell, J. W.
Format: Book Chapter
Language:English
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:A new accelerated gradient method for finding the minimum of a function f(x) whose variables are unconstrained is investigated. The new algorithm can be stated as follows: \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tilde x = x + \delta x,\delta x = - \alpha g(x) + \beta \delta \hat x$$\end{document} where δx is the change in the position vector x, (g(x) is the gradient of the function f(x), and α and β are scalars chosen at each step so as to yield the greatest decrease in the function. The symbol \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\delta \hat x$$\end{document} denotes the change in the position vector for the iteration preceding that under consideration. For a nonquadratic function, initial convergence of the present method is faster than that of the Fletcher-Reeves method because of the extra degree of freedom available. Three test problems are considered. A comparison is made between the ordinary gradient method, the Fletcher-Reeves method, and the memory gradient method.
ISSN:0075-8434
1617-9692
DOI:10.1007/BFb0066685