Loading…

Experimental Methods in Ventilation

This chapter describes different experimental methods related to the function of ventilation. Methods of thermal comfort are also treated. A classical, comprehensive review paper on this subject is found in Hitchin and Wilson (1967). Much information provided by this paper is still valid, although t...

Full description

Saved in:
Bibliographic Details
Published in:Advances in building energy research 2008, Vol.2 (1), p.159-210
Main Authors: Sandberg, M., Lundström, H., Nilsson, H. O., Stymne, H.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This chapter describes different experimental methods related to the function of ventilation. Methods of thermal comfort are also treated. A classical, comprehensive review paper on this subject is found in Hitchin and Wilson (1967). Much information provided by this paper is still valid, although today the standard technology is digital, not analogue. In this chapter we examine a range of developments in the field since Hitchin and Wilson's paper. With arrays of sensors in digital cameras and heat cameras, etc., we can record velocities, temperatures and concentrations over whole fields in space instead of point-wise. Adding tracers that follow air movement is a qualitative visualization method that has now become a quantitative method for recording velocities over large fields. Optical techniques such as laser Doppler anemometry are now a standard technique for recording the velocity vector at a specific point. Passive tracer gas techniques enable one to take measurements in the field without tying up expensive and bulky equipment. There has been a shift from pure technical issues to a focus on people. Concern about air quality has led to development of manikins that can breathe. Instruments for assessing thermal comfort have been developed that combine the effect of radiation, velocity and temperature in an index.
ISSN:1751-2549
1756-2201
DOI:10.3763/aber.2008.0206