Loading…

Calibrating Random Forests

When using the output of classifiers to calculate the expected utility of different alternatives in decision situations, the correctness of predicted class probabilities may be of crucial importance. However, even very accurate classifiers may output class probabilities of rather poor quality. One w...

Full description

Saved in:
Bibliographic Details
Main Author: Bostrom, H.
Format: Conference Proceeding
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:When using the output of classifiers to calculate the expected utility of different alternatives in decision situations, the correctness of predicted class probabilities may be of crucial importance. However, even very accurate classifiers may output class probabilities of rather poor quality. One way of overcoming this problem is by means of calibration, i.e., mapping the original class probabilities to more accurate ones. Previous studies have however indicated that random forests are difficult to calibrate by standard calibration methods. In this work, a novel calibration method is introduced, which is based on a recent finding that probabilities predicted by forests of classification trees have a lower squared error compared to those predicted by forests of probability estimation trees (PETs). The novel calibration method is compared to the two standard methods, Platt scaling and isotonic regression, on 34 datasets from the UCI repository. The experiment shows that random forests of PETs calibrated by the novel method significantly outperform uncalibrated random forests of both PETs and classification trees, as well as random forests calibrated with the two standard methods, with respect to the squared error of predicted class probabilities.
DOI:10.1109/ICMLA.2008.107