Loading…
A robust, mass conservative scheme for two-phase flow in porous media including Hölder continuous nonlinearities
Abstract In this work, we present a mass conservative numerical scheme for two-phase flow in porous media. The model for flow consists of two fully coupled, nonlinear equations: a degenerate parabolic equation and an elliptic one. The proposed numerical scheme is based on backward Euler for the temp...
Saved in:
Published in: | IMA journal of numerical analysis 2018-04, Vol.38 (2), p.884-920 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Abstract
In this work, we present a mass conservative numerical scheme for two-phase flow in porous media. The model for flow consists of two fully coupled, nonlinear equations: a degenerate parabolic equation and an elliptic one. The proposed numerical scheme is based on backward Euler for the temporal discretization and mixed finite element method for the spatial one. A priori stability and error estimates are presented to prove the convergence of the scheme. A monotone increasing, Hölder continuous saturation is considered. The convergence of the scheme is naturally dependant on the Hölder exponent. The nonlinear systems within each time step are solved by a robust linearization method, called the $L$-scheme. This iterative method does not involve any regularization step. The convergence of the $L$-scheme is rigorously proved under the assumption of a Lipschitz continuous saturation. For the Hölder continuous case, a numerical convergence is established. Numerical results (two-dimensional and three-dimensional) are presented to sustain the theoretical findings. |
---|---|
ISSN: | 0272-4979 1464-3642 1464-3642 |
DOI: | 10.1093/imanum/drx032 |