Loading…

A robust, mass conservative scheme for two-phase flow in porous media including Hölder continuous nonlinearities

Abstract In this work, we present a mass conservative numerical scheme for two-phase flow in porous media. The model for flow consists of two fully coupled, nonlinear equations: a degenerate parabolic equation and an elliptic one. The proposed numerical scheme is based on backward Euler for the temp...

Full description

Saved in:
Bibliographic Details
Published in:IMA journal of numerical analysis 2018-04, Vol.38 (2), p.884-920
Main Authors: Radu, Florin A, Kumar, Kundan, Nordbotten, Jan M, Pop, Iuliu S
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c346t-72402e3b382f78f849d5f848169b9a387ac71417fd3711c6079c69e3029ac9283
cites cdi_FETCH-LOGICAL-c346t-72402e3b382f78f849d5f848169b9a387ac71417fd3711c6079c69e3029ac9283
container_end_page 920
container_issue 2
container_start_page 884
container_title IMA journal of numerical analysis
container_volume 38
creator Radu, Florin A
Kumar, Kundan
Nordbotten, Jan M
Pop, Iuliu S
description Abstract In this work, we present a mass conservative numerical scheme for two-phase flow in porous media. The model for flow consists of two fully coupled, nonlinear equations: a degenerate parabolic equation and an elliptic one. The proposed numerical scheme is based on backward Euler for the temporal discretization and mixed finite element method for the spatial one. A priori stability and error estimates are presented to prove the convergence of the scheme. A monotone increasing, Hölder continuous saturation is considered. The convergence of the scheme is naturally dependant on the Hölder exponent. The nonlinear systems within each time step are solved by a robust linearization method, called the $L$-scheme. This iterative method does not involve any regularization step. The convergence of the $L$-scheme is rigorously proved under the assumption of a Lipschitz continuous saturation. For the Hölder continuous case, a numerical convergence is established. Numerical results (two-dimensional and three-dimensional) are presented to sustain the theoretical findings.
doi_str_mv 10.1093/imanum/drx032
format article
fullrecord <record><control><sourceid>oup_swepu</sourceid><recordid>TN_cdi_swepub_primary_oai_DiVA_org_kau_69312</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/imanum/drx032</oup_id><sourcerecordid>10.1093/imanum/drx032</sourcerecordid><originalsourceid>FETCH-LOGICAL-c346t-72402e3b382f78f849d5f848169b9a387ac71417fd3711c6079c69e3029ac9283</originalsourceid><addsrcrecordid>eNqFkLtOwzAYhS0EEqUwsntkaKhv2PFYlUuRKrEAq-U4TmtI4mDHFF6MF-DFSBXEyvL_OtJ3zvABcI7RJUaSzl2j29TMy_CBKDkAE8w4yyhn5BBMEBEkY1LIY3AS4wtCiHGBJuBtAYMvUuxnsNExQuPbaMO77t27hdFsbWNh5QPsdz7rtjoOqfY76FrY-eBThI0tnR6yqVPp2g1cfX_VpQ37od61aY-0vq1da3VwvbPxFBxVuo727PdPwdPtzeNyla0f7u6Xi3VmKON9JghDxNKC5qQSeZUzWV4NN8dcFlLTXGgjMMOiKqnA2HAkpOHSUkSkNpLkdApm427c2S4VqguDn_CpvHbq2j0vlA8b9aqT4pJiMuDZiJvgYwy2-itgpPZ61ahXjXoH_mLkfer-QX8Ar4CAwQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A robust, mass conservative scheme for two-phase flow in porous media including Hölder continuous nonlinearities</title><source>Oxford Journals Online</source><creator>Radu, Florin A ; Kumar, Kundan ; Nordbotten, Jan M ; Pop, Iuliu S</creator><creatorcontrib>Radu, Florin A ; Kumar, Kundan ; Nordbotten, Jan M ; Pop, Iuliu S</creatorcontrib><description>Abstract In this work, we present a mass conservative numerical scheme for two-phase flow in porous media. The model for flow consists of two fully coupled, nonlinear equations: a degenerate parabolic equation and an elliptic one. The proposed numerical scheme is based on backward Euler for the temporal discretization and mixed finite element method for the spatial one. A priori stability and error estimates are presented to prove the convergence of the scheme. A monotone increasing, Hölder continuous saturation is considered. The convergence of the scheme is naturally dependant on the Hölder exponent. The nonlinear systems within each time step are solved by a robust linearization method, called the $L$-scheme. This iterative method does not involve any regularization step. The convergence of the $L$-scheme is rigorously proved under the assumption of a Lipschitz continuous saturation. For the Hölder continuous case, a numerical convergence is established. Numerical results (two-dimensional and three-dimensional) are presented to sustain the theoretical findings.</description><identifier>ISSN: 0272-4979</identifier><identifier>ISSN: 1464-3642</identifier><identifier>EISSN: 1464-3642</identifier><identifier>DOI: 10.1093/imanum/drx032</identifier><language>eng</language><publisher>Oxford University Press</publisher><subject>Matematik ; Mathematics</subject><ispartof>IMA journal of numerical analysis, 2018-04, Vol.38 (2), p.884-920</ispartof><rights>The authors 2017. Published by Oxford University Press on behalf of the Institute of Mathematics and its Applications. All rights reserved. 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c346t-72402e3b382f78f849d5f848169b9a387ac71417fd3711c6079c69e3029ac9283</citedby><cites>FETCH-LOGICAL-c346t-72402e3b382f78f849d5f848169b9a387ac71417fd3711c6079c69e3029ac9283</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27903,27904</link.rule.ids><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:kau:diva-69312$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Radu, Florin A</creatorcontrib><creatorcontrib>Kumar, Kundan</creatorcontrib><creatorcontrib>Nordbotten, Jan M</creatorcontrib><creatorcontrib>Pop, Iuliu S</creatorcontrib><title>A robust, mass conservative scheme for two-phase flow in porous media including Hölder continuous nonlinearities</title><title>IMA journal of numerical analysis</title><description>Abstract In this work, we present a mass conservative numerical scheme for two-phase flow in porous media. The model for flow consists of two fully coupled, nonlinear equations: a degenerate parabolic equation and an elliptic one. The proposed numerical scheme is based on backward Euler for the temporal discretization and mixed finite element method for the spatial one. A priori stability and error estimates are presented to prove the convergence of the scheme. A monotone increasing, Hölder continuous saturation is considered. The convergence of the scheme is naturally dependant on the Hölder exponent. The nonlinear systems within each time step are solved by a robust linearization method, called the $L$-scheme. This iterative method does not involve any regularization step. The convergence of the $L$-scheme is rigorously proved under the assumption of a Lipschitz continuous saturation. For the Hölder continuous case, a numerical convergence is established. Numerical results (two-dimensional and three-dimensional) are presented to sustain the theoretical findings.</description><subject>Matematik</subject><subject>Mathematics</subject><issn>0272-4979</issn><issn>1464-3642</issn><issn>1464-3642</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNqFkLtOwzAYhS0EEqUwsntkaKhv2PFYlUuRKrEAq-U4TmtI4mDHFF6MF-DFSBXEyvL_OtJ3zvABcI7RJUaSzl2j29TMy_CBKDkAE8w4yyhn5BBMEBEkY1LIY3AS4wtCiHGBJuBtAYMvUuxnsNExQuPbaMO77t27hdFsbWNh5QPsdz7rtjoOqfY76FrY-eBThI0tnR6yqVPp2g1cfX_VpQ37od61aY-0vq1da3VwvbPxFBxVuo727PdPwdPtzeNyla0f7u6Xi3VmKON9JghDxNKC5qQSeZUzWV4NN8dcFlLTXGgjMMOiKqnA2HAkpOHSUkSkNpLkdApm427c2S4VqguDn_CpvHbq2j0vlA8b9aqT4pJiMuDZiJvgYwy2-itgpPZ61ahXjXoH_mLkfer-QX8Ar4CAwQ</recordid><startdate>20180418</startdate><enddate>20180418</enddate><creator>Radu, Florin A</creator><creator>Kumar, Kundan</creator><creator>Nordbotten, Jan M</creator><creator>Pop, Iuliu S</creator><general>Oxford University Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>DG3</scope></search><sort><creationdate>20180418</creationdate><title>A robust, mass conservative scheme for two-phase flow in porous media including Hölder continuous nonlinearities</title><author>Radu, Florin A ; Kumar, Kundan ; Nordbotten, Jan M ; Pop, Iuliu S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c346t-72402e3b382f78f849d5f848169b9a387ac71417fd3711c6079c69e3029ac9283</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Matematik</topic><topic>Mathematics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Radu, Florin A</creatorcontrib><creatorcontrib>Kumar, Kundan</creatorcontrib><creatorcontrib>Nordbotten, Jan M</creatorcontrib><creatorcontrib>Pop, Iuliu S</creatorcontrib><collection>CrossRef</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Karlstads universitet</collection><jtitle>IMA journal of numerical analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Radu, Florin A</au><au>Kumar, Kundan</au><au>Nordbotten, Jan M</au><au>Pop, Iuliu S</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A robust, mass conservative scheme for two-phase flow in porous media including Hölder continuous nonlinearities</atitle><jtitle>IMA journal of numerical analysis</jtitle><date>2018-04-18</date><risdate>2018</risdate><volume>38</volume><issue>2</issue><spage>884</spage><epage>920</epage><pages>884-920</pages><issn>0272-4979</issn><issn>1464-3642</issn><eissn>1464-3642</eissn><abstract>Abstract In this work, we present a mass conservative numerical scheme for two-phase flow in porous media. The model for flow consists of two fully coupled, nonlinear equations: a degenerate parabolic equation and an elliptic one. The proposed numerical scheme is based on backward Euler for the temporal discretization and mixed finite element method for the spatial one. A priori stability and error estimates are presented to prove the convergence of the scheme. A monotone increasing, Hölder continuous saturation is considered. The convergence of the scheme is naturally dependant on the Hölder exponent. The nonlinear systems within each time step are solved by a robust linearization method, called the $L$-scheme. This iterative method does not involve any regularization step. The convergence of the $L$-scheme is rigorously proved under the assumption of a Lipschitz continuous saturation. For the Hölder continuous case, a numerical convergence is established. Numerical results (two-dimensional and three-dimensional) are presented to sustain the theoretical findings.</abstract><pub>Oxford University Press</pub><doi>10.1093/imanum/drx032</doi><tpages>37</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0272-4979
ispartof IMA journal of numerical analysis, 2018-04, Vol.38 (2), p.884-920
issn 0272-4979
1464-3642
1464-3642
language eng
recordid cdi_swepub_primary_oai_DiVA_org_kau_69312
source Oxford Journals Online
subjects Matematik
Mathematics
title A robust, mass conservative scheme for two-phase flow in porous media including Hölder continuous nonlinearities
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T16%3A11%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-oup_swepu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20robust,%20mass%20conservative%20scheme%20for%20two-phase%20flow%20in%20porous%20media%20including%20H%C3%B6lder%20continuous%20nonlinearities&rft.jtitle=IMA%20journal%20of%20numerical%20analysis&rft.au=Radu,%20Florin%20A&rft.date=2018-04-18&rft.volume=38&rft.issue=2&rft.spage=884&rft.epage=920&rft.pages=884-920&rft.issn=0272-4979&rft.eissn=1464-3642&rft_id=info:doi/10.1093/imanum/drx032&rft_dat=%3Coup_swepu%3E10.1093/imanum/drx032%3C/oup_swepu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c346t-72402e3b382f78f849d5f848169b9a387ac71417fd3711c6079c69e3029ac9283%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_oup_id=10.1093/imanum/drx032&rfr_iscdi=true