Loading…
On one-step replica symmetry breaking in the Edwards-Anderson spin glass model
We consider a one-step replica symmetry breaking description of the Edwards-Anderson spin glass model in 2D. The ingredients of this description are a Kikuchi approximation to the free energy and a second-level statistical model built on the extremal points of the Kikuchi approximation, which are al...
Saved in:
Published in: | Journal of statistical mechanics 2016-07, Vol.2016 (7), p.73305 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We consider a one-step replica symmetry breaking description of the Edwards-Anderson spin glass model in 2D. The ingredients of this description are a Kikuchi approximation to the free energy and a second-level statistical model built on the extremal points of the Kikuchi approximation, which are also fixed points of a generalized belief propagation (GBP) scheme. We show that a generalized free energy can be constructed where these extremal points are exponentially weighted by their Kikuchi free energy and a Parisi parameter y, and that the Kikuchi approximation of this generalized free energy leads to second-level, one-step replica symmetry breaking (1RSB), GBP equations. We then proceed analogously to the Bethe approximation case for tree-like graphs, where it has been shown that 1RSB belief propagation equations admit a survey propagation solution. We discuss when and how the one-step-replica symmetry breaking GBP equations that we obtain also allow a simpler class of solutions which can be interpreted as a class of generalized survey propagation equations for the single instance graph case. |
---|---|
ISSN: | 1742-5468 1572-9613 0022-4715 1742-5468 |
DOI: | 10.1088/1742-5468/2016/07/073305 |