Loading…

Demonstrating the Influence of Solvent Choice and Crystallization Conditions on Phenacetin Crystal Habit and Particle Size Distribution

Phenacetin was used as a model pharmaceutical compound to investigate the impact of solvent choice and crystallization conditions on the crystal habit and size distribution of the final crystallized product. The crystal habit of phenacetin was explored using crash-cooling crystallization (kineticall...

Full description

Saved in:
Bibliographic Details
Published in:Organic process research & development 2015-12, Vol.19 (12), p.1826-1836
Main Authors: Croker, Denise M, Kelly, Dawn M, Horgan, Danielle E, Hodnett, B. Kieran, Lawrence, Simon E, Moynihan, Humphrey A, Rasmuson, Åke C
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Phenacetin was used as a model pharmaceutical compound to investigate the impact of solvent choice and crystallization conditions on the crystal habit and size distribution of the final crystallized product. The crystal habit of phenacetin was explored using crash-cooling crystallization (kinetically controlled) and slow evaporative crystallization (thermodynamically controlled) in a wide range of organic solvents. In general, a variety of needle-type shapes (needles, rods, or blades) were recovered from fast-cooling crystallizations, in contrast to hexagonal blocks obtained from slow evaporative crystallizations. The solubility of phenacetin was measured in five solvents from 10–70 °C to allow for the design of larger-scale crystallization experiments. Supersaturation and the nucleation temperature were independently controlled in isothermal desupersaturation experiments to investigate the impact of each on crystal habit and size. The crystal size (needle cross-sectional area) decreased with increasing supersaturation because of higher nucleation rates at higher supersaturation, and elongated needles were recovered. Increasing the nucleation temperature resulted in the production of larger crystals with decreased needle aspect ratios. Antisolvent phenacetin crystallizations were developed for three solvent/antisolvent systems using four different antisolvent addition rates to simultaneously probe the crystal habit and size of the final product. In general, increasing the antisolvent addition rate, associated with increased rate of generation of supersaturation, resulted in the production of shorter needle crystals.
ISSN:1083-6160
1520-586X
1520-586X
DOI:10.1021/op500308x