Loading…

Rapid Classification of Quantum Sources Enabled by Machine Learning

Deterministic nanoassembly may enable unique integrated on‐chip quantum photonic devices. Such integration requires a careful large‐scale selection of nanoscale building blocks such as solid‐state single‐photon emitters by means of optical characterization. Second‐order autocorrelation is a cornerst...

Full description

Saved in:
Bibliographic Details
Published in:Advanced quantum technologies (Online) 2020-10, Vol.3 (10), p.n/a
Main Authors: Kudyshev, Zhaxylyk A., Bogdanov, Simeon I., Isacsson, Theodor, Kildishev, Alexander V., Boltasseva, Alexandra, Shalaev, Vladimir M.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Deterministic nanoassembly may enable unique integrated on‐chip quantum photonic devices. Such integration requires a careful large‐scale selection of nanoscale building blocks such as solid‐state single‐photon emitters by means of optical characterization. Second‐order autocorrelation is a cornerstone measurement that is particularly time‐consuming to realize on a large scale. Supervised machine learning‐based classification of quantum emitters as “single” or “not‐single” is implemented based on their sparse autocorrelation data. The method yields a classification accuracy of 95% within an integration time of less than a second, realizing roughly a 100‐fold speedup compared to the conventional Levenberg–Marquardt fitting approach. It is anticipated that machine learning‐based classification will provide a unique route to enable rapid and scalable assembly of quantum nanophotonic devices. Supervised machine learning‐based classification of quantum emitters as “single” or “not‐single” is implemented based on their sparse autocorrelation data. The method yields a classification accuracy of 95% within an integration time of less than a second, realizing roughly a 100‐fold speedup compared to the conventional Levenberg–Marquardt fitting approach.
ISSN:2511-9044
2511-9044
DOI:10.1002/qute.202000067