Loading…

Uniform blowing and suction applied to nonuniform adverse-pressure-gradient wing boundary layers

A detailed analysis of the effects of uniform blowing, uniform suction, and body-force damping on the turbulent boundary layer developing around a NACA4412 airfoil at moderate Reynolds number is presented. The flow over the suction and the pressure sides of the airfoil is subjected to a nonuniform a...

Full description

Saved in:
Bibliographic Details
Published in:Physical review fluids 2021-11, Vol.6 (11), Article 113904
Main Authors: Atzori, Marco, Vinuesa, Ricardo, Stroh, Alexander, Gatti, Davide, Frohnapfel, Bettina, Schlatter, Philipp
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:A detailed analysis of the effects of uniform blowing, uniform suction, and body-force damping on the turbulent boundary layer developing around a NACA4412 airfoil at moderate Reynolds number is presented. The flow over the suction and the pressure sides of the airfoil is subjected to a nonuniform adverse pressure gradient and a moderate favorable pressure gradient, respectively. We find that the changes in total skin friction due to blowing and suction are not very sensitive to different pressure-gradient conditions or the Reynolds number. However, when blowing and suction are applied to an adverse-pressure-gradient (APG) boundary layer, their impact on properties such as the boundary-layer thickness, the intensity of the wall-normal convection, and turbulent fluctuations are more pronounced. We employ the Fukagata-Iwamoto-Kasagi decomposition [K. Fukagata et al., Phys. Fluids 14, 73 (2002)] and spectral analysis to study the interaction between intense adverse pressure gradient and these control strategies. We find that the control modifies skin-friction contributions differently in adverse-pressure-gradient and zero-pressure-gradient boundary layers. In particular, the control strategies modify considerably both the streamwisedevelopment and the pressure-gradient contributions, which have high magnitude when a strong adverse pressure gradient is present. Blowing and suction also impact the convection of structures in the wall-normal direction. Overall, our results suggest that it is not possible to simply separate pressure-gradient and control effects, a fact to take into account in future studies on control design in practical applications.
ISSN:2469-990X
2469-990X
DOI:10.1103/PhysRevFluids.6.113904