Loading…
Exact linesearch limited-memory quasi-Newton methods for minimizing a quadratic function
The main focus in this paper is exact linesearch methods for minimizing a quadratic function whose Hessian is positive definite. We give a class of limited-memory quasi-Newton Hessian approximations which generate search directions parallel to those of the BFGS method, or equivalently, to those of t...
Saved in:
Published in: | Computational optimization and applications 2021-07, Vol.79 (3), p.789-816 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The main focus in this paper is exact linesearch methods for minimizing a quadratic function whose Hessian is positive definite. We give a class of limited-memory quasi-Newton Hessian approximations which generate search directions parallel to those of the BFGS method, or equivalently, to those of the method of preconditioned conjugate gradients. In the setting of reduced Hessians, the class provides a dynamical framework for the construction of limited-memory quasi-Newton methods. These methods attain finite termination on quadratic optimization problems in exact arithmetic. We show performance of the methods within this framework in finite precision arithmetic by numerical simulations on sequences of related systems of linear equations, which originate from the CUTEst test collection. In addition, we give a compact representation of the Hessian approximations in the full Broyden class for the general unconstrained optimization problem. This representation consists of explicit matrices and gradients only as vector components. |
---|---|
ISSN: | 0926-6003 1573-2894 1573-2894 |
DOI: | 10.1007/s10589-021-00277-4 |