Loading…

Exact linesearch limited-memory quasi-Newton methods for minimizing a quadratic function

The main focus in this paper is exact linesearch methods for minimizing a quadratic function whose Hessian is positive definite. We give a class of limited-memory quasi-Newton Hessian approximations which generate search directions parallel to those of the BFGS method, or equivalently, to those of t...

Full description

Saved in:
Bibliographic Details
Published in:Computational optimization and applications 2021-07, Vol.79 (3), p.789-816
Main Authors: Ek, David, Forsgren, Anders
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The main focus in this paper is exact linesearch methods for minimizing a quadratic function whose Hessian is positive definite. We give a class of limited-memory quasi-Newton Hessian approximations which generate search directions parallel to those of the BFGS method, or equivalently, to those of the method of preconditioned conjugate gradients. In the setting of reduced Hessians, the class provides a dynamical framework for the construction of limited-memory quasi-Newton methods. These methods attain finite termination on quadratic optimization problems in exact arithmetic. We show performance of the methods within this framework in finite precision arithmetic by numerical simulations on sequences of related systems of linear equations, which originate from the CUTEst test collection. In addition, we give a compact representation of the Hessian approximations in the full Broyden class for the general unconstrained optimization problem. This representation consists of explicit matrices and gradients only as vector components.
ISSN:0926-6003
1573-2894
1573-2894
DOI:10.1007/s10589-021-00277-4