Loading…
Human cardiovascular adaptation to hypergravity
Despite decades of experience from high-gravitoinertial (G) exposures in aircraft and centrifuges, information is scarce regarding primary cardiovascular adaptations to +Gz loads in relaxed humans. Thus, effects of G-training are typically evaluated after regimens that are confounded by concomitant...
Saved in:
Published in: | American journal of physiology. Regulatory, integrative and comparative physiology integrative and comparative physiology, 2022-06, Vol.322 (6), p.R597-R608 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Despite decades of experience from high-gravitoinertial (G) exposures in aircraft and centrifuges, information is scarce regarding primary cardiovascular adaptations to +Gz loads in relaxed humans. Thus, effects of G-training are typically evaluated after regimens that are confounded by concomitant use of anti-G straining maneuvers, anti-G suits, and pressure breathing. Accordingly, the aim was to evaluate cardiovascular adaptations to repeated +Gz exposures in the relaxed state. Eleven men underwent 5 wk of centrifuge G training, consisting of 15 × 40 min +Gz exposures at G levels close to their individual relaxed G-level tolerance. Before and after the training regimen, relaxed G-level tolerance was investigated during rapid onset-rate (ROR) and gradual onset-rate (GOR) G exposures, and cardiovascular responses were investigated during orthostatic provocation and vascular pressure-distension tests. The G training resulted in:
) a 13% increase in relaxed ROR G tolerance (
< 0.001), but no change in GOR G tolerance,
) increased pressure resistance in the arteries and arterioles of the legs (
< 0.001), but not the arms, and
) a reduced initial drop in arterial pressure upon ROR high G, but no change in arterial pressure under basal resting conditions or during GOR G loading, or orthostatic provocation. The results suggest +Gz adaptation via enhanced pressure resistance in dependent arteries/arterioles. Presumably, this reflects local adaptations to high transmural pressures, resulting from the +Gz-induced exaggeration of the intravascular hydrostatic pressure gradients. |
---|---|
ISSN: | 0363-6119 1522-1490 1522-1490 |
DOI: | 10.1152/ajpregu.00043.2022 |