Loading…
Throughput Maximization for Backscatter- and Cache-Assisted Wireless Powered UAV Technology
This paper investigates a wireless powered unmanned aerial vehicle (UAV) communication network with backscatter and caching technologies. Specifically, we assume a self-energized UAV with a cache memory is deployed as a flying backscatter device (BD), term the UAV-enabled BD (UB), to relay the sourc...
Saved in:
Published in: | IEEE transactions on vehicular technology 2022-05, Vol.71 (5), p.5187-5202 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This paper investigates a wireless powered unmanned aerial vehicle (UAV) communication network with backscatter and caching technologies. Specifically, we assume a self-energized UAV with a cache memory is deployed as a flying backscatter device (BD), term the UAV-enabled BD (UB), to relay the source's signals to the destination. Whereas the source S can act as a wireless charging station or a base station to supply power or transmit information to the UB using the dynamic time splitting (DTS) method. The UAV utilizes its harvested energy for backscattering (i.e., passive communication) and transmit information (i.e., active communication) to the destination. In this context, we aim to maximize the total throughput by jointly optimizing the DTS ratio and the UB's trajectory with caching capability at the UB. The formulation is troublesome to solve since it is a non-convex problem. To find solutions, we decompose the original problem into two sub-problems, whereas we first optimize the DTS ratio for a given UB's trajectory and the UB's trajectory optimization for a given DTS ratio. By using the KKT conditions, a closed-form expression for the optimal value of the DTS ratio is obtained, greatly reducing the computation time. Moreover, the solution of the second sub-problem can be acquired by adopting the successive convex approximation (SCA) technique. Consequently, an efficient alternating algorithm is proposed by leveraging the block coordinate descent (BCD) method. To show the advantages of the proposed BCD-based algorithm, we also provide the solution of the original problem applying the inner approximation (IA) method. Finally, the intensive numerical results demonstrate that our proposed schemes achieve significant throughput gain in comparison to the benchmark schemes. |
---|---|
ISSN: | 0018-9545 1939-9359 1939-9359 |
DOI: | 10.1109/TVT.2022.3155190 |