Loading…

Scalable Production of Monodisperse Bioactive Spider Silk Nanowires

Elongated protein‐based micro‐ and nanostructures are of great interest for a wide range of biomedical applications, where they can serve as a backbone for surface functionalization and as vehicles for drug delivery. Current production methods for protein constructs lack precise control of either sh...

Full description

Saved in:
Bibliographic Details
Published in:Macromolecular bioscience 2023-04, Vol.23 (4), p.e2200450-n/a
Main Authors: Gustafsson, Linnea, Kvick, Mathias, Åstrand, Carolina, Ponsteen, Nienke, Dorka, Nicolai, Hegrová, Veronika, Svanberg, Sara, Horák, Josef, Jansson, Ronnie, Hedhammar, My, van der Wijngaart, Wouter
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c4510-179d3726d890bf95e9c882f972eacffa5252e5f52d89c2a660d2e638acfa58a43
cites cdi_FETCH-LOGICAL-c4510-179d3726d890bf95e9c882f972eacffa5252e5f52d89c2a660d2e638acfa58a43
container_end_page n/a
container_issue 4
container_start_page e2200450
container_title Macromolecular bioscience
container_volume 23
creator Gustafsson, Linnea
Kvick, Mathias
Åstrand, Carolina
Ponsteen, Nienke
Dorka, Nicolai
Hegrová, Veronika
Svanberg, Sara
Horák, Josef
Jansson, Ronnie
Hedhammar, My
van der Wijngaart, Wouter
description Elongated protein‐based micro‐ and nanostructures are of great interest for a wide range of biomedical applications, where they can serve as a backbone for surface functionalization and as vehicles for drug delivery. Current production methods for protein constructs lack precise control of either shape and dimensions or render structures fixed to substrates. This work demonstrates production of recombinant spider silk nanowires suspended in solution, starting with liquid bridge induced assembly (LBIA) on a substrate, followed by release using ultrasonication, and concentration by centrifugation. The significance of this method lies in that it provides i) reproducability (standard deviation of length
doi_str_mv 10.1002/mabi.202200450
format article
fullrecord <record><control><sourceid>proquest_swepu</sourceid><recordid>TN_cdi_swepub_primary_oai_DiVA_org_kth_323201</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2801883958</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4510-179d3726d890bf95e9c882f972eacffa5252e5f52d89c2a660d2e638acfa58a43</originalsourceid><addsrcrecordid>eNqFkM9PwjAUxxujEUSvHs0Sz8P2be3aI-AvElAT1GvTbZ0WBp0tk_DfOwLOo6f3ku_nffLyReiS4D7BGG6WKjV9wAAYxxQfoS5hhIWUCHrc7jzpoDPv5xiThAs4RZ2IMQZJEnfRaJapUqWlDl6czetsbewqsEUwtSubG19p53UwNFY1ybcOZpXJtQtmplwET2plN8Zpf45OClV6fXGYPfR2f_c6egwnzw_j0WASZjElOCSJyKMEWM4FTgtBtcg4h0IkoFVWFIoCBU0LCg2QgWIM56BZxJtQUa7iqIfCvddvdFWnsnJmqdxWWmXkrXkfSOs-5GL9KSOIAJOGv97zlbNftfZrObe1WzUvSuCYcB4Jyhuqv6cyZ713umi9BMtdx3LXsWw7bg6uDto6Xeq8xX9LbQCxBzam1Nt_dHI6GI7_5D_CSYfG</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2801883958</pqid></control><display><type>article</type><title>Scalable Production of Monodisperse Bioactive Spider Silk Nanowires</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Gustafsson, Linnea ; Kvick, Mathias ; Åstrand, Carolina ; Ponsteen, Nienke ; Dorka, Nicolai ; Hegrová, Veronika ; Svanberg, Sara ; Horák, Josef ; Jansson, Ronnie ; Hedhammar, My ; van der Wijngaart, Wouter</creator><creatorcontrib>Gustafsson, Linnea ; Kvick, Mathias ; Åstrand, Carolina ; Ponsteen, Nienke ; Dorka, Nicolai ; Hegrová, Veronika ; Svanberg, Sara ; Horák, Josef ; Jansson, Ronnie ; Hedhammar, My ; van der Wijngaart, Wouter</creatorcontrib><description>Elongated protein‐based micro‐ and nanostructures are of great interest for a wide range of biomedical applications, where they can serve as a backbone for surface functionalization and as vehicles for drug delivery. Current production methods for protein constructs lack precise control of either shape and dimensions or render structures fixed to substrates. This work demonstrates production of recombinant spider silk nanowires suspended in solution, starting with liquid bridge induced assembly (LBIA) on a substrate, followed by release using ultrasonication, and concentration by centrifugation. The significance of this method lies in that it provides i) reproducability (standard deviation of length &lt;13% and of diameter &lt;38%), ii) scalability of fabrication, iii) compatibility with autoclavation with retained shape and function, iv) retention of bioactivity, and v) easy functionalization both pre‐ and post‐formation. This work demonstrates how altering the function and nanotopography of a surface by nanowire coating supports the attachment and growth of human mesenchymal stem cells (hMSCs). Cell compatibility is further studied through integration of nanowires during aggregate formation of hMSCs and the breast cancer cell line MCF7. The herein‐presented industrial‐compatible process enables silk nanowires for use as functionalizing agents in a variety of cell culture applications and medical research. The process for production and release of spider silk nanowires using liquid bridge induced assembly is successfully upscaled to produce over 12 million of 10 µm long nanowires suspended in solution within 20 min. The nanowires can easily be functionalized both pre‐and post‐formation and are successfully used as an ECM mimic to support cell adhesion and integrated into 3D cell aggregates.</description><identifier>ISSN: 1616-5187</identifier><identifier>ISSN: 1616-5195</identifier><identifier>EISSN: 1616-5195</identifier><identifier>DOI: 10.1002/mabi.202200450</identifier><identifier>PMID: 36662774</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Animals ; Biocompatibility ; Biological activity ; Biomedical materials ; Biotechnology ; Bioteknologi ; cell aggregates ; Cell culture ; Cell Culture Techniques ; Centrifugation ; Drug delivery ; Fabrication ; Humans ; liquid bridge induced assembly ; Liquid bridges ; Medical research ; Mesenchymal stem cells ; Nanostructures ; Nanotechnology ; Nanowires ; Production methods ; Proteins ; scalable production ; Silk ; Silk - chemistry ; spider silk ; Spiders ; Stem cells ; Substrates</subject><ispartof>Macromolecular bioscience, 2023-04, Vol.23 (4), p.e2200450-n/a</ispartof><rights>2023 The Authors. Macromolecular Bioscience published by Wiley‐VCH GmbH</rights><rights>2023 The Authors. Macromolecular Bioscience published by Wiley-VCH GmbH.</rights><rights>2023. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4510-179d3726d890bf95e9c882f972eacffa5252e5f52d89c2a660d2e638acfa58a43</citedby><cites>FETCH-LOGICAL-c4510-179d3726d890bf95e9c882f972eacffa5252e5f52d89c2a660d2e638acfa58a43</cites><orcidid>0000-0003-0140-419X ; 0000-0002-8925-2815 ; 0000-0001-8248-6670</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36662774$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-323201$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Gustafsson, Linnea</creatorcontrib><creatorcontrib>Kvick, Mathias</creatorcontrib><creatorcontrib>Åstrand, Carolina</creatorcontrib><creatorcontrib>Ponsteen, Nienke</creatorcontrib><creatorcontrib>Dorka, Nicolai</creatorcontrib><creatorcontrib>Hegrová, Veronika</creatorcontrib><creatorcontrib>Svanberg, Sara</creatorcontrib><creatorcontrib>Horák, Josef</creatorcontrib><creatorcontrib>Jansson, Ronnie</creatorcontrib><creatorcontrib>Hedhammar, My</creatorcontrib><creatorcontrib>van der Wijngaart, Wouter</creatorcontrib><title>Scalable Production of Monodisperse Bioactive Spider Silk Nanowires</title><title>Macromolecular bioscience</title><addtitle>Macromol Biosci</addtitle><description>Elongated protein‐based micro‐ and nanostructures are of great interest for a wide range of biomedical applications, where they can serve as a backbone for surface functionalization and as vehicles for drug delivery. Current production methods for protein constructs lack precise control of either shape and dimensions or render structures fixed to substrates. This work demonstrates production of recombinant spider silk nanowires suspended in solution, starting with liquid bridge induced assembly (LBIA) on a substrate, followed by release using ultrasonication, and concentration by centrifugation. The significance of this method lies in that it provides i) reproducability (standard deviation of length &lt;13% and of diameter &lt;38%), ii) scalability of fabrication, iii) compatibility with autoclavation with retained shape and function, iv) retention of bioactivity, and v) easy functionalization both pre‐ and post‐formation. This work demonstrates how altering the function and nanotopography of a surface by nanowire coating supports the attachment and growth of human mesenchymal stem cells (hMSCs). Cell compatibility is further studied through integration of nanowires during aggregate formation of hMSCs and the breast cancer cell line MCF7. The herein‐presented industrial‐compatible process enables silk nanowires for use as functionalizing agents in a variety of cell culture applications and medical research. The process for production and release of spider silk nanowires using liquid bridge induced assembly is successfully upscaled to produce over 12 million of 10 µm long nanowires suspended in solution within 20 min. The nanowires can easily be functionalized both pre‐and post‐formation and are successfully used as an ECM mimic to support cell adhesion and integrated into 3D cell aggregates.</description><subject>Animals</subject><subject>Biocompatibility</subject><subject>Biological activity</subject><subject>Biomedical materials</subject><subject>Biotechnology</subject><subject>Bioteknologi</subject><subject>cell aggregates</subject><subject>Cell culture</subject><subject>Cell Culture Techniques</subject><subject>Centrifugation</subject><subject>Drug delivery</subject><subject>Fabrication</subject><subject>Humans</subject><subject>liquid bridge induced assembly</subject><subject>Liquid bridges</subject><subject>Medical research</subject><subject>Mesenchymal stem cells</subject><subject>Nanostructures</subject><subject>Nanotechnology</subject><subject>Nanowires</subject><subject>Production methods</subject><subject>Proteins</subject><subject>scalable production</subject><subject>Silk</subject><subject>Silk - chemistry</subject><subject>spider silk</subject><subject>Spiders</subject><subject>Stem cells</subject><subject>Substrates</subject><issn>1616-5187</issn><issn>1616-5195</issn><issn>1616-5195</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNqFkM9PwjAUxxujEUSvHs0Sz8P2be3aI-AvElAT1GvTbZ0WBp0tk_DfOwLOo6f3ku_nffLyReiS4D7BGG6WKjV9wAAYxxQfoS5hhIWUCHrc7jzpoDPv5xiThAs4RZ2IMQZJEnfRaJapUqWlDl6czetsbewqsEUwtSubG19p53UwNFY1ybcOZpXJtQtmplwET2plN8Zpf45OClV6fXGYPfR2f_c6egwnzw_j0WASZjElOCSJyKMEWM4FTgtBtcg4h0IkoFVWFIoCBU0LCg2QgWIM56BZxJtQUa7iqIfCvddvdFWnsnJmqdxWWmXkrXkfSOs-5GL9KSOIAJOGv97zlbNftfZrObe1WzUvSuCYcB4Jyhuqv6cyZ713umi9BMtdx3LXsWw7bg6uDto6Xeq8xX9LbQCxBzam1Nt_dHI6GI7_5D_CSYfG</recordid><startdate>202304</startdate><enddate>202304</enddate><creator>Gustafsson, Linnea</creator><creator>Kvick, Mathias</creator><creator>Åstrand, Carolina</creator><creator>Ponsteen, Nienke</creator><creator>Dorka, Nicolai</creator><creator>Hegrová, Veronika</creator><creator>Svanberg, Sara</creator><creator>Horák, Josef</creator><creator>Jansson, Ronnie</creator><creator>Hedhammar, My</creator><creator>van der Wijngaart, Wouter</creator><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>WIN</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>D8V</scope><orcidid>https://orcid.org/0000-0003-0140-419X</orcidid><orcidid>https://orcid.org/0000-0002-8925-2815</orcidid><orcidid>https://orcid.org/0000-0001-8248-6670</orcidid></search><sort><creationdate>202304</creationdate><title>Scalable Production of Monodisperse Bioactive Spider Silk Nanowires</title><author>Gustafsson, Linnea ; Kvick, Mathias ; Åstrand, Carolina ; Ponsteen, Nienke ; Dorka, Nicolai ; Hegrová, Veronika ; Svanberg, Sara ; Horák, Josef ; Jansson, Ronnie ; Hedhammar, My ; van der Wijngaart, Wouter</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4510-179d3726d890bf95e9c882f972eacffa5252e5f52d89c2a660d2e638acfa58a43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Animals</topic><topic>Biocompatibility</topic><topic>Biological activity</topic><topic>Biomedical materials</topic><topic>Biotechnology</topic><topic>Bioteknologi</topic><topic>cell aggregates</topic><topic>Cell culture</topic><topic>Cell Culture Techniques</topic><topic>Centrifugation</topic><topic>Drug delivery</topic><topic>Fabrication</topic><topic>Humans</topic><topic>liquid bridge induced assembly</topic><topic>Liquid bridges</topic><topic>Medical research</topic><topic>Mesenchymal stem cells</topic><topic>Nanostructures</topic><topic>Nanotechnology</topic><topic>Nanowires</topic><topic>Production methods</topic><topic>Proteins</topic><topic>scalable production</topic><topic>Silk</topic><topic>Silk - chemistry</topic><topic>spider silk</topic><topic>Spiders</topic><topic>Stem cells</topic><topic>Substrates</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gustafsson, Linnea</creatorcontrib><creatorcontrib>Kvick, Mathias</creatorcontrib><creatorcontrib>Åstrand, Carolina</creatorcontrib><creatorcontrib>Ponsteen, Nienke</creatorcontrib><creatorcontrib>Dorka, Nicolai</creatorcontrib><creatorcontrib>Hegrová, Veronika</creatorcontrib><creatorcontrib>Svanberg, Sara</creatorcontrib><creatorcontrib>Horák, Josef</creatorcontrib><creatorcontrib>Jansson, Ronnie</creatorcontrib><creatorcontrib>Hedhammar, My</creatorcontrib><creatorcontrib>van der Wijngaart, Wouter</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>Wiley-Blackwell Open Access Backfiles (Open Access)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Kungliga Tekniska Högskolan</collection><jtitle>Macromolecular bioscience</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gustafsson, Linnea</au><au>Kvick, Mathias</au><au>Åstrand, Carolina</au><au>Ponsteen, Nienke</au><au>Dorka, Nicolai</au><au>Hegrová, Veronika</au><au>Svanberg, Sara</au><au>Horák, Josef</au><au>Jansson, Ronnie</au><au>Hedhammar, My</au><au>van der Wijngaart, Wouter</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Scalable Production of Monodisperse Bioactive Spider Silk Nanowires</atitle><jtitle>Macromolecular bioscience</jtitle><addtitle>Macromol Biosci</addtitle><date>2023-04</date><risdate>2023</risdate><volume>23</volume><issue>4</issue><spage>e2200450</spage><epage>n/a</epage><pages>e2200450-n/a</pages><issn>1616-5187</issn><issn>1616-5195</issn><eissn>1616-5195</eissn><abstract>Elongated protein‐based micro‐ and nanostructures are of great interest for a wide range of biomedical applications, where they can serve as a backbone for surface functionalization and as vehicles for drug delivery. Current production methods for protein constructs lack precise control of either shape and dimensions or render structures fixed to substrates. This work demonstrates production of recombinant spider silk nanowires suspended in solution, starting with liquid bridge induced assembly (LBIA) on a substrate, followed by release using ultrasonication, and concentration by centrifugation. The significance of this method lies in that it provides i) reproducability (standard deviation of length &lt;13% and of diameter &lt;38%), ii) scalability of fabrication, iii) compatibility with autoclavation with retained shape and function, iv) retention of bioactivity, and v) easy functionalization both pre‐ and post‐formation. This work demonstrates how altering the function and nanotopography of a surface by nanowire coating supports the attachment and growth of human mesenchymal stem cells (hMSCs). Cell compatibility is further studied through integration of nanowires during aggregate formation of hMSCs and the breast cancer cell line MCF7. The herein‐presented industrial‐compatible process enables silk nanowires for use as functionalizing agents in a variety of cell culture applications and medical research. The process for production and release of spider silk nanowires using liquid bridge induced assembly is successfully upscaled to produce over 12 million of 10 µm long nanowires suspended in solution within 20 min. The nanowires can easily be functionalized both pre‐and post‐formation and are successfully used as an ECM mimic to support cell adhesion and integrated into 3D cell aggregates.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>36662774</pmid><doi>10.1002/mabi.202200450</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-0140-419X</orcidid><orcidid>https://orcid.org/0000-0002-8925-2815</orcidid><orcidid>https://orcid.org/0000-0001-8248-6670</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1616-5187
ispartof Macromolecular bioscience, 2023-04, Vol.23 (4), p.e2200450-n/a
issn 1616-5187
1616-5195
1616-5195
language eng
recordid cdi_swepub_primary_oai_DiVA_org_kth_323201
source Wiley-Blackwell Read & Publish Collection
subjects Animals
Biocompatibility
Biological activity
Biomedical materials
Biotechnology
Bioteknologi
cell aggregates
Cell culture
Cell Culture Techniques
Centrifugation
Drug delivery
Fabrication
Humans
liquid bridge induced assembly
Liquid bridges
Medical research
Mesenchymal stem cells
Nanostructures
Nanotechnology
Nanowires
Production methods
Proteins
scalable production
Silk
Silk - chemistry
spider silk
Spiders
Stem cells
Substrates
title Scalable Production of Monodisperse Bioactive Spider Silk Nanowires
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T03%3A35%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_swepu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Scalable%20Production%20of%20Monodisperse%20Bioactive%20Spider%20Silk%20Nanowires&rft.jtitle=Macromolecular%20bioscience&rft.au=Gustafsson,%20Linnea&rft.date=2023-04&rft.volume=23&rft.issue=4&rft.spage=e2200450&rft.epage=n/a&rft.pages=e2200450-n/a&rft.issn=1616-5187&rft.eissn=1616-5195&rft_id=info:doi/10.1002/mabi.202200450&rft_dat=%3Cproquest_swepu%3E2801883958%3C/proquest_swepu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4510-179d3726d890bf95e9c882f972eacffa5252e5f52d89c2a660d2e638acfa58a43%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2801883958&rft_id=info:pmid/36662774&rfr_iscdi=true