Loading…
Stochastic Fokker–Planck Equations for Conditional McKean–Vlasov Jump Diffusions and Applications to Optimal Control
The purpose of this paper is to study optimal control of conditional McKean-Vlasov (mean-field) stochastic differential equations with jumps (conditional McKean-Vlasov jump diffu-sions, for short). To this end, we first prove a stochastic Fokker-Planck equation for the conditional law of the solutio...
Saved in:
Published in: | SIAM journal on control and optimization 2023-01, Vol.61 (3), p.1472-1493 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The purpose of this paper is to study optimal control of conditional McKean-Vlasov (mean-field) stochastic differential equations with jumps (conditional McKean-Vlasov jump diffu-sions, for short). To this end, we first prove a stochastic Fokker-Planck equation for the conditional law of the solution of such equations. Combining this equation with the original state equation, we obtain a Markovian system for the state and its conditional law. Furthermore, we apply this to formulate a Hamilton-Jacobi-Bellman equation for the optimal control of conditional McKean-Vlasov jump diffusions. Then we study the situation when the law is absolutely continuous with respect to Lebesgue measure. In that case the Fokker-Planck equation reduces to a stochastic par-tial differential equation for the Radon-Nikodym derivative of the conditional law. Finally we apply these results to solve explicitly the linear-quadratic optimal control problem of conditional stochastic McKean-Vlasov jump diffusions, and optimal consumption from a cash flow. |
---|---|
ISSN: | 0363-0129 1095-7138 1095-7138 |
DOI: | 10.1137/21M1461034 |