Loading…
Kinetic Inductive Electromechanical Transduction for Nanoscale Force Sensing
We use the principles of cavity optomechanics to design a resonant mechanical force sensor for atomic force microscopy. The sensor is based on a type of electromechanical coupling, dual to traditional capacitive coupling, whereby the motion of a cantilever induces surface strain that causes a change...
Saved in:
Published in: | Physical review applied 2023-08, Vol.20 (2), Article 024022 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We use the principles of cavity optomechanics to design a resonant mechanical force sensor for atomic force microscopy. The sensor is based on a type of electromechanical coupling, dual to traditional capacitive coupling, whereby the motion of a cantilever induces surface strain that causes a change in the kinetic inductance of a superconducting nanowire. The cavity is realized by a compact microwave-plasma mode with an equivalent LC circuit involving the kinetic inductance of the nanowire. The device is fully coplanar and we show how to transform the cavity impedance for optimal coupling to the transmission line and the following amplifier. For the device presented here, we estimate the bare kinetic inductive mechanoelectric coupling (KIMEC) rate g0/2π in the range 3–10 Hz. We demonstrate phase-sensitive detection of cantilever motion using a multifrequency pumping and measurement scheme. |
---|---|
ISSN: | 2331-7019 2331-7019 |
DOI: | 10.1103/PhysRevApplied.20.024022 |