Loading…

Controllability of networked multiagent systems based on linearized Turing’s model

Turing’s model has been widely used to explain how simple, uniform structures can give rise to complex, patterned structures during the development of organisms. However, it is very hard to establish rigorous theoretical results for the dynamic evolution behavior of Turing’s model since it is descri...

Full description

Saved in:
Bibliographic Details
Published in:Automatica (Oxford) 2024-04, Vol.162, p.111507, Article 111507
Main Authors: Li, Tianhao, Zhang, Ruichang, Liu, Zhixin, Zou, Zhuo, Hu, Xiaoming
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Turing’s model has been widely used to explain how simple, uniform structures can give rise to complex, patterned structures during the development of organisms. However, it is very hard to establish rigorous theoretical results for the dynamic evolution behavior of Turing’s model since it is described by nonlinear partial differential equations. We focus on controllability of Turing’s model by linearization and spatial discretization. This linearized model is a networked system whose agents are second order linear systems and these agents interact with each other by Laplacian dynamics on a graph. A control signal can be added to agents of choice. Under mild conditions on the parameters of the linearized Turing’s model, we prove the equivalence between controllability of the linearized Turing’s model and controllability of a Laplace dynamic system with agents of first order dynamics. When the graph is a grid graph or a cylinder grid graph, we then give precisely the minimal number of control nodes and a corresponding control node set such that the Laplace dynamic systems on these graphs with agents of first order dynamics are controllable.
ISSN:0005-1098
1873-2836
1873-2836
DOI:10.1016/j.automatica.2023.111507