Loading…
Controllability of networked multiagent systems based on linearized Turing’s model
Turing’s model has been widely used to explain how simple, uniform structures can give rise to complex, patterned structures during the development of organisms. However, it is very hard to establish rigorous theoretical results for the dynamic evolution behavior of Turing’s model since it is descri...
Saved in:
Published in: | Automatica (Oxford) 2024-04, Vol.162, p.111507, Article 111507 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Turing’s model has been widely used to explain how simple, uniform structures can give rise to complex, patterned structures during the development of organisms. However, it is very hard to establish rigorous theoretical results for the dynamic evolution behavior of Turing’s model since it is described by nonlinear partial differential equations. We focus on controllability of Turing’s model by linearization and spatial discretization. This linearized model is a networked system whose agents are second order linear systems and these agents interact with each other by Laplacian dynamics on a graph. A control signal can be added to agents of choice. Under mild conditions on the parameters of the linearized Turing’s model, we prove the equivalence between controllability of the linearized Turing’s model and controllability of a Laplace dynamic system with agents of first order dynamics. When the graph is a grid graph or a cylinder grid graph, we then give precisely the minimal number of control nodes and a corresponding control node set such that the Laplace dynamic systems on these graphs with agents of first order dynamics are controllable. |
---|---|
ISSN: | 0005-1098 1873-2836 1873-2836 |
DOI: | 10.1016/j.automatica.2023.111507 |