Loading…

Deep learning for quadratic hedging in incomplete jump market

We propose a deep learning approach to study the minimal variance pricing and hedging problem in an incomplete jump diffusion market. It is based on a rigorous stochastic calculus derivation of the optimal hedging portfolio, optimal option price, and the corresponding equivalent martingale measure t...

Full description

Saved in:
Bibliographic Details
Published in:Digital finance 2024, Vol.6 (3), p.463-499
Main Authors: Agram, Nacira, Øksendal, Bernt, Rems, Jan
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We propose a deep learning approach to study the minimal variance pricing and hedging problem in an incomplete jump diffusion market. It is based on a rigorous stochastic calculus derivation of the optimal hedging portfolio, optimal option price, and the corresponding equivalent martingale measure through the means of the Stackelberg game approach. A deep learning algorithm based on the combination of the feed-forward and LSTM neural networks is tested on three different market models, two of which are incomplete. In contrast, the complete market Black–Scholes model serves as a benchmark for the algorithm’s performance. The results that indicate the algorithm’s good performance are presented and discussed. In particular, we apply our results to the special incomplete market model studied by Merton and give a detailed comparison between our results based on the minimal variance principle and the results obtained by Merton based on a different pricing principle. Using deep learning, we find that the minimal variance principle leads to typically higher option prices than those deduced from the Merton principle. On the other hand, the minimal variance principle leads to lower losses than the Merton principle.
ISSN:2524-6984
2524-6186
2524-6186
DOI:10.1007/s42521-024-00112-5