Loading…
Optimal growth, model reduction and control in a separated boundary-layer flow using global eigenmodes
Two-dimensional global eigenmodes are used as a projection basis both for analysing the dynamics and building a reduced model for control in a prototype separated boundary-layer flow. In the present configuration, a high-aspect-ratio smooth cavity-like geometry confines the separation bubble. Optima...
Saved in:
Published in: | Journal of fluid mechanics 2007-05, Vol.579, p.305-314 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Two-dimensional global eigenmodes are used as a projection basis both for analysing the dynamics and building a reduced model for control in a prototype separated boundary-layer flow. In the present configuration, a high-aspect-ratio smooth cavity-like geometry confines the separation bubble. Optimal growth analysis using the reduced basis shows that the sum of the highly non-normal global eigenmodes is able to describe a localized disturbance. Subject to this worst-case initial condition, a large transient growth associated with the development of a wavepacket along the shear layer followed by a global cycle related to the two unstable global eigenmodes is found. The flow simulation procedure is coupled to a measurement feedback controller, which senses the wall shear stress at the downstream lip of the cavity and actuates at the upstream lip. A reduced model for the control optimization is obtained by a projection on the least stable global eigenmodes, and the resulting linear-quadratic-Gaussian controller is applied to the Navier–Stokes time integration. It is shown that the controller is able to damp out the global oscillations. |
---|---|
ISSN: | 0022-1120 1469-7645 1469-7645 |
DOI: | 10.1017/S0022112007005496 |