Loading…
Multipole moments for embedding potentials: Exploring different atomic allocation algorithms
Polarizable quantum mechanical (QM)/molecular mechanics (MM)‐embedding methods are currently among the most promising methods for computationally feasible, yet reliable, production calculations of localized excitations and molecular response properties of large molecular complexes, such as proteins...
Saved in:
Published in: | Journal of computational chemistry 2016-07, Vol.37 (20), p.1887-1896 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Polarizable quantum mechanical (QM)/molecular mechanics (MM)‐embedding methods are currently among the most promising methods for computationally feasible, yet reliable, production calculations of localized excitations and molecular response properties of large molecular complexes, such as proteins and RNA/DNA, and of molecules in solution. Our aim is to develop a computational methodology for distributed multipole moments and their associated multipole polarizabilities which is accurate, computationally efficient, and with smooth convergence with respect to multipole order. As the first step toward this goal, we herein investigate different ways of obtaining distributed atom‐centered multipole moments that are used in the construction of the electrostatic part of the embedding potential. Our objective is methods that not only are accurate and computationally efficient, but which can be consistently extended with site polarizabilities including internal charge transfer terms. We present a new way of dealing with well‐known problems in relation to the use of basis sets with diffuse functions in conventional atomic allocation algorithms, avoiding numerical integration schemes. Using this approach, we show that the classical embedding potential can be systematically improved, also when using basis sets with diffuse functions, and that very accurate embedding potentials suitable for QM/MM embedding calculations can be acquired. © 2016 Wiley Periodicals, Inc.
Polarizable QM/MM‐embedding methods are among the most promising methods for modeling of bio‐molecular complexes. Essential to the accuracy of such calculations is a proper description of the electrostatic potential stemming from the environment. This article investigates how this best can be obtained with distributed atom‐centered multipole moments in a way which straightforwardly can be extended to distributed multipole polarizabilities. |
---|---|
ISSN: | 0192-8651 1096-987X 1096-987X |
DOI: | 10.1002/jcc.24403 |