Loading…
Using Transposition to Efficiently Solve Constant Matrix-Vector Multiplication and Sum of Product Problems
In this work, we present an approach to alleviate the potential benefit of adder graph algorithms by solving the transposed form of the problem and then transposing the solution. The key contribution is a systematic way to obtain the transposed realization with a minimum number of cascaded adders su...
Saved in:
Published in: | Journal of signal processing systems 2020-10, Vol.92 (10), p.1075-1089 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In this work, we present an approach to alleviate the potential benefit of adder graph algorithms by solving the transposed form of the problem and then transposing the solution. The key contribution is a systematic way to obtain the transposed realization with a minimum number of cascaded adders subject to the input realization. In this way, wide and low constant matrix multiplication problems, with sum of products as a special case, which are normally exceptionally time consuming to solve using adder graph algorithms, can be solved by first transposing the matrix and then transposing the solution. Examples show that while the relation between the adder depth of the solution to the transposed problem and the original problem is not straightforward, there are many cases where the reduction in adder cost will more than compensate for the potential increase in adder depth and result in implementations with reduced power consumption compared to using sub-expression sharing algorithms, which can both solve the original problem directly in reasonable time and guarantee a minimum adder depth. |
---|---|
ISSN: | 1939-8018 1939-8115 1939-8115 |
DOI: | 10.1007/s11265-020-01560-z |