Loading…

Large-deviation asymptotics of condition numbers of random matrices

Let $\mathbf{X}$ be a $p\times n$ random matrix whose entries are independent and identically distributed real random variables with zero mean and unit variance. We study the limiting behaviors of the 2-normal condition number k(p,n) of $\mathbf{X}$ in terms of large deviations for large n, with p b...

Full description

Saved in:
Bibliographic Details
Published in:Journal of applied probability 2021-12, Vol.58 (4), p.1114-1130
Main Authors: Singull, Martin, Uwamariya, Denise, Yang, Xiangfeng
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Let $\mathbf{X}$ be a $p\times n$ random matrix whose entries are independent and identically distributed real random variables with zero mean and unit variance. We study the limiting behaviors of the 2-normal condition number k(p,n) of $\mathbf{X}$ in terms of large deviations for large n, with p being fixed or $p=p(n)\rightarrow\infty$ with $p(n)=o(n)$ . We propose two main ingredients: (i) to relate the large-deviation probabilities of k(p,n) to those involving n independent and identically distributed random variables, which enables us to consider a quite general distribution of the entries (namely the sub-Gaussian distribution), and (ii) to control, for standard normal entries, the upper tail of k(p,n) using the upper tails of ratios of two independent $\chi^2$ random variables, which enables us to establish an application in statistical inference.
ISSN:0021-9002
1475-6072
1475-6072
DOI:10.1017/jpr.2021.13