Loading…

Bright Free‐Radical Emission in Ionic Liquids

It is challenging to achieve stable and efficient radical emissions under ambient conditions. Herein, we present a rational design strategy to protect photoinduced carbonyl free radical emission through electrostatic interaction and spin delocalization effects. The host‐guest system is constructed f...

Full description

Saved in:
Bibliographic Details
Published in:Angewandte Chemie International Edition 2023-08, Vol.62 (32), p.e202305925-n/a
Main Authors: Zheng, Wei, Li, XuPing, Baryshnikov, Glib V., Shan, Xueru, Siddique, Farhan, Qian, Cheng, Zhao, Shengyin, Wu, Hongwei
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:It is challenging to achieve stable and efficient radical emissions under ambient conditions. Herein, we present a rational design strategy to protect photoinduced carbonyl free radical emission through electrostatic interaction and spin delocalization effects. The host‐guest system is constructed from tricarbonyl‐substituted benzene molecules and a series of imidazolium ionic liquids as the guest and host, respectively, whereby the carbonyl anion radical emission can be in situ generated under the light irradiation and further stabilized by electrostatic interaction. More importantly, the anion species and the alkyl chain length of imidazolium ionic liquids show a noticeable effect on luminescence efficiency, with the highest radical emission efficiency is as high as 53.3 % after optimizing the imidazole ionic liquid's structure, which is about four times higher than the polymer‐protected radical system. Theoretical calculations confirm the synergistic effect of strong electrostatic interactions and that the spin delocalization effect significantly stabilizes the radical emission. Moreover, such a radical emission system also could be integrated with a fluorescent dye to induce multi‐color or even white light emission with reversible temperature‐responsive characteristics. The radical emission system can also be used to detect different amine compounds on the basis of the emission changes and photoactivation time. Imidazole ionic liquids have been used to protect photoinduced radical emissions from carbonyl through electrostatic interactions and spin delocalization effects, with a highest emission efficiency of 53.3 % achieved. The radical system could be used to build multi‐color and heat‐responsive luminescence materials. They could also be used to detect different amine compounds based on the change in the emission and photoactivation times.
ISSN:1433-7851
1521-3773
1521-3773
DOI:10.1002/anie.202305925