Loading…
Spectral Relations for Multidimensional Complex Improper Stationary and (Almost) Cyclostationary Processes
We study continuous-time multidimensional wide- sense stationary (WSS) and (almost) cyclostationary processes in the frequency domain. Under the assumption that the correlation function is uniformly continuous, we prove the existence of a unique sequence of spectral measures, which coincide with the...
Saved in:
Published in: | IEEE transactions on information theory 2008-04, Vol.54 (4), p.1670-1682 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We study continuous-time multidimensional wide- sense stationary (WSS) and (almost) cyclostationary processes in the frequency domain. Under the assumption that the correlation function is uniformly continuous, we prove the existence of a unique sequence of spectral measures, which coincide with the restrictions to certain subdiagonals of the spectral measure in the strongly harmonizable case. Moreover, the off-diagonal measures are absolutely continuous with respect to the diagonal measure. As a consequence, for strongly harmonizable scalar improper almost cyclostationary processes, we obtain representation formulas for the components of the complementary spectral measure and the off-diagonal components of the spectral measure, in terms of the diagonal component of the spectral measure. We apply these results to analytic signals, which produces sufficient conditions for propriety for almost cyclostationary analytic signals. |
---|---|
ISSN: | 0018-9448 1557-9654 1557-9654 |
DOI: | 10.1109/TIT.2008.917626 |