Loading…
Contrasting regimes for organic matter degradation in the East Siberian Sea and the Laptev Sea assessed through microbial incubations and molecular markers
Compositional studies of organic matter on the East Siberian Arctic Shelf (ESAS) suggest that different terrestrial carbon pools have different propensities for transport and/or degradation. The current study combined laboratory-based microbial degradation experiments with earlier published degradat...
Saved in:
Published in: | Marine chemistry 2015-03, Vol.170, p.11-22 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Compositional studies of organic matter on the East Siberian Arctic Shelf (ESAS) suggest that different terrestrial carbon pools have different propensities for transport and/or degradation. The current study combined laboratory-based microbial degradation experiments with earlier published degradation-diagnostic composition of several classes of terrestrial biomarkers on the same sediments to investigate differences and driving forces of terrestrial organic matter (TerrOM) degradation in two biogeochemically-contrasting regimes of the ESAS.
The incubation-based anaerobic degradation rates were consistently higher (by average factor of 6) in the East Siberian Sea Kolyma Paleoriver Channel (ESS-KPC) (15μmolCO2gOC−1day−1) compared to the Laptev Sea Buor-Khaya Bay (LS-BKB) (2.4μmolCO2gOC−1day−1).
The reported molecular markers show similarities between the terrestrial carbon pools in the two systems, but impose contrasting degradation regimes in combination with the incubation results. For the LS-BKB, there was a strong relationship between the degradation rates and the three lignin phenol-based degradation proxies (r2=0.93–0.96, p |
---|---|
ISSN: | 0304-4203 1872-7581 1872-7581 |
DOI: | 10.1016/j.marchem.2014.12.005 |