Loading…
Sometimes Size Does Not Matter
Recently Díaz, Hössjer and Marks (DHM) presented a Bayesian framework to measure cosmological tuning (either fine or coarse) that uses maximum entropy (maxent) distributions on unbounded sample spaces as priors for the parameters of the physical models ( https://doi.org/10.1088/1475-7516/2021/07/020...
Saved in:
Published in: | Foundations of physics 2023-02, Vol.53 (1), Article 1 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Recently Díaz, Hössjer and Marks (DHM) presented a Bayesian framework to measure cosmological tuning (either fine or coarse) that uses maximum entropy (maxent) distributions on unbounded sample spaces as priors for the parameters of the physical models (
https://doi.org/10.1088/1475-7516/2021/07/020
). The DHM framework stands in contrast to previous attempts to measure tuning that rely on a uniform prior assumption. However, since the parameters of the models often take values in spaces of infinite size, the uniformity assumption is unwarranted. This is known as the normalization problem. In this paper we explain why and how the DHM framework not only evades the normalization problem but also circumvents other objections to the tuning measurement like the so called weak anthropic principle, the selection of a single maxent distribution and, importantly, the lack of invariance of maxent distributions with respect to data transformations. We also propose to treat fine-tuning as an emergence problem to avoid infinite loops in the prior distribution of hyperparameters (common to all Bayesian analysis), and explain that previous attempts to measure tuning using uniform priors are particular cases of the DHM framework. Finally, we prove a theorem, explaining when tuning is fine or coarse for different families of distributions. The theorem is summarized in a table for ease of reference, and the tuning of three physical parameters is analyzed using the conclusions of the theorem. |
---|---|
ISSN: | 0015-9018 1572-9516 1572-9516 |
DOI: | 10.1007/s10701-022-00650-1 |