Loading…

Lime Residues and Metal Sequestration in Sediments of Excessively Limed Lakes

Sediment profiles from ten excessively limed lakes were used to study the occurrence of lime residues as a result of incomplete lime dissolution and the influence of treatment with very high lime doses on the sequestration of metals in lake sediments. The sediment profiles were subjected to multi-el...

Full description

Saved in:
Bibliographic Details
Published in:Water, air, and soil pollution air, and soil pollution, 2011-07, Vol.219 (1-4), p.535-546
Main Author: Wallstedt, Teresia
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Sediment profiles from ten excessively limed lakes were used to study the occurrence of lime residues as a result of incomplete lime dissolution and the influence of treatment with very high lime doses on the sequestration of metals in lake sediments. The sediment profiles were subjected to multi-element analysis and compared to sediment profiles from previous studies of lakes limed with normal lime doses and untreated reference lakes. The high lime doses were found to result in large lime residues in the sediment, with lime concentrations of up to 70% of the dry sediment in the studied lakes. Excessive liming, like liming with normal doses, was found to cause increased sequestration in sediments of, e.g. Cd, Co, Ni and Zn, metals where the mobility is known to be highly pH dependent, compared to non-limed reference lakes. No effect of liming on the sequestration of Cu, Cr, Pb and V could be shown. The size of the lime dose did not seem to influence the metal sequestration in the sediment, since no difference between the excessively limed lakes and lakes limed with normal doses was found. On the contrary, the large lime residues were found to cause a dilution of the metal concentrations in the sediments, since lime products used for lake liming generally have lower metal concentrations compared to the sediments.
ISSN:0049-6979
1573-2932
1573-2932
DOI:10.1007/s11270-010-0726-0