Loading…
Collaborative-controlled LASSO for constructing propensity score-based estimators in high-dimensional data
Propensity score-based estimators are increasingly used for causal inference in observational studies. However, model selection for propensity score estimation in high-dimensional data has received little attention. In these settings, propensity score models have traditionally been selected based on...
Saved in:
Published in: | Statistical methods in medical research 2019-04, Vol.28 (4), p.1044-1063 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Propensity score-based estimators are increasingly used for causal inference in observational studies. However, model selection for propensity score estimation in high-dimensional data has received little attention. In these settings, propensity score models have traditionally been selected based on the goodness-of-fit for the treatment mechanism itself, without consideration of the causal parameter of interest. Collaborative minimum loss-based estimation is a novel methodology for causal inference that takes into account information on the causal parameter of interest when selecting a propensity score model. This “collaborative learning” considers variable associations with both treatment and outcome when selecting a propensity score model in order to minimize a bias-variance tradeoff in the estimated treatment effect. In this study, we introduce a novel approach for collaborative model selection when using the LASSO estimator for propensity score estimation in high-dimensional covariate settings. To demonstrate the importance of selecting the propensity score model collaboratively, we designed quasi-experiments based on a real electronic healthcare database, where only the potential outcomes were manually generated, and the treatment and baseline covariates remained unchanged. Results showed that the collaborative minimum loss-based estimation algorithm outperformed other competing estimators for both point estimation and confidence interval coverage. In addition, the propensity score model selected by collaborative minimum loss-based estimation could be applied to other propensity score-based estimators, which also resulted in substantive improvement for both point estimation and confidence interval coverage. We illustrate the discussed concepts through an empirical example comparing the effects of non-selective nonsteroidal anti-inflammatory drugs with selective COX-2 inhibitors on gastrointestinal complications in a population of Medicare beneficiaries. |
---|---|
ISSN: | 0962-2802 1477-0334 1477-0334 |
DOI: | 10.1177/0962280217744588 |