Loading…
Edge precoloring extension of hypercubes
We consider the problem of extending partial edge colorings of hypercubes. In particular, we obtain an analogue of the positive solution to the famous Evans' conjecture on completing partial Latin squares by proving that every proper partial edge coloring of at most d−1 edges of the d‐dimension...
Saved in:
Published in: | Journal of graph theory 2020-11, Vol.95 (3), p.410-444 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We consider the problem of extending partial edge colorings of hypercubes. In particular, we obtain an analogue of the positive solution to the famous Evans' conjecture on completing partial Latin squares by proving that every proper partial edge coloring of at most d−1 edges of the d‐dimensional hypercube Qd can be extended to a proper d‐edge coloring of Qd. Additionally, we characterize which partial edge colorings of Qd with precisely d precolored edges are extendable to proper d‐edge colorings of Qd. |
---|---|
ISSN: | 0364-9024 1097-0118 1097-0118 |
DOI: | 10.1002/jgt.22561 |