Loading…

Molecular Structures of Citrate and Tricarballylate Adsorbed on α-FeOOH Particles in Aqueous Suspensions

In this work, the adsorption of citric (2-hydroxypropane-1,2,3-tricarboxylic acid) and tricarballylic (propane-1,2,3-tricarboxylic acid) acids onto α-FeOOH (goethite) in aqueous suspensions was studied as a function of pH and total ligand concentration in 0.1 M NaCl at 25.0 °C, and the molecular str...

Full description

Saved in:
Bibliographic Details
Published in:Langmuir 2009-09, Vol.25 (18), p.10639-10647
Main Authors: Lindegren, Malin, Loring, John S, Persson, Per
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In this work, the adsorption of citric (2-hydroxypropane-1,2,3-tricarboxylic acid) and tricarballylic (propane-1,2,3-tricarboxylic acid) acids onto α-FeOOH (goethite) in aqueous suspensions was studied as a function of pH and total ligand concentration in 0.1 M NaCl at 25.0 °C, and the molecular structures of the surface complexes formed were analyzed by means of ATR-FTIR spectroscopy. The adsorption experiments were carried out as a series of batch experiments, and a newly developed simultaneous infrared and potentiometric titration technique was used to collect in situ infrared spectra with high signal-to-noise ratios. The high quality of the infrared spectra allowed analysis by means of two-dimensional correlation spectroscopy formalism that aided the resolution of pH-dependent spectral features. This has enabled the detection of two previously unidentified citrate-goethite surface complexes: one protonated species at low pH, and one inner sphere complex prevailing at high pH and coordinated via a combination of hydroxyl and carboxylate groups. In addition, an inner sphere complex involving only carboxylate coordination predominating at low pH and an outer sphere complex existing in the circumneutral pH region were identified. The behavior of tricarballylate parallels that of citrate, except no inner sphere surface complex is formed at high pH values, which is in accordance with the lack of an α-hydroxyl group. The comparison between citrate and tricarballylate reinforces previous observations showing that inner sphere surface complexes of pure carboxylates at water-iron oxide interfaces are suppressed at high pH values, where outer sphere species are relatively more predominant. It also shows that significant amounts of inner sphere surface complexes of carboxylates only seem to form in the basic pH region when the ligands contain complementary functional groups, such as the hydroxyl or amine groups.
ISSN:0743-7463
1520-5827
1520-5827
DOI:10.1021/la900852p