Loading…
Theoretical and Experimental Investigation of Palladium(II)-Catalyzed Decarboxylative Addition of Arenecarboxylic Acid to Nitrile
The reaction mechanism of palladium(II)-catalyzed decarboxylative addition of 2,6-dimethoxybenzoic acid to acetonitrile was investigated by means of density functional theory (DFT) calculations. Calculations of the free energy profile for decarboxylation and carbopalladation indicated carbopalladat...
Saved in:
Published in: | Organometallics 2013-01, Vol.32 (2), p.490-497 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The reaction mechanism of palladium(II)-catalyzed decarboxylative addition of 2,6-dimethoxybenzoic acid to acetonitrile was investigated by means of density functional theory (DFT) calculations. Calculations of the free energy profile for decarboxylation and carbopalladation indicated carbopalladation as the rate-determining step of the reaction. Investigation of the free energy profile for a series of experimentally evaluated nitrogen-based bidentate palladium ligands revealed that higher energy is required for decarboxylation and carbopalladation employing the experimentally least efficient ligand. The DFT investigation also showed that the relative free energies of the transition states were lowered in polar solvent, and preparative experiments confirmed that a nonoptimal ligand could be greatly improved by addition of water to the reaction system. |
---|---|
ISSN: | 0276-7333 1520-6041 1520-6041 |
DOI: | 10.1021/om3009525 |