Loading…
On the Typical Structure of Graphs in a Monotone Property
Given a graph property $\mathcal{P}$, it is interesting to determine the typical structure of graphs that satisfy $\mathcal{P}$. In this paper, we consider monotone properties, that is, properties that are closed under taking subgraphs. Using results from the theory of graph limits, we show that i...
Saved in:
Published in: | The Electronic journal of combinatorics 2014-08, Vol.21 (3), p.P3.34 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Given a graph property $\mathcal{P}$, it is interesting to determine the typical structure of graphs that satisfy $\mathcal{P}$. In this paper, we consider monotone properties, that is, properties that are closed under taking subgraphs. Using results from the theory of graph limits, we show that if $\mathcal{P}$ is a monotone property and $r$ is the largest integer for which every $r$-colorable graph satisfies $\mathcal{P}$, then almost every graph with $\mathcal{P}$ is close to being a balanced $r$-partite graph. |
---|---|
ISSN: | 1077-8926 1097-1440 1077-8926 |
DOI: | 10.37236/4266 |