Loading…
On the Typical Structure of Graphs in a Monotone Property
Given a graph property $\mathcal{P}$, it is interesting to determine the typical structure of graphs that satisfy $\mathcal{P}$. In this paper, we consider monotone properties, that is, properties that are closed under taking subgraphs. Using results from the theory of graph limits, we show that i...
Saved in:
Published in: | The Electronic journal of combinatorics 2014-08, Vol.21 (3), p.P3.34 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c258t-2a05918d95c775e49b064051bbb78f6c28a33d7316cffb890a4e27d5e1c0da043 |
---|---|
cites | |
container_end_page | |
container_issue | 3 |
container_start_page | P3.34 |
container_title | The Electronic journal of combinatorics |
container_volume | 21 |
creator | Janson, Svante Uzzell, Andrew J. |
description | Given a graph property $\mathcal{P}$, it is interesting to determine the typical structure of graphs that satisfy $\mathcal{P}$. In this paper, we consider monotone properties, that is, properties that are closed under taking subgraphs. Using results from the theory of graph limits, we show that if $\mathcal{P}$ is a monotone property and $r$ is the largest integer for which every $r$-colorable graph satisfies $\mathcal{P}$, then almost every graph with $\mathcal{P}$ is close to being a balanced $r$-partite graph. |
doi_str_mv | 10.37236/4266 |
format | article |
fullrecord | <record><control><sourceid>swepub_cross</sourceid><recordid>TN_cdi_swepub_primary_oai_DiVA_org_uu_233011</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>oai_DiVA_org_uu_233011</sourcerecordid><originalsourceid>FETCH-LOGICAL-c258t-2a05918d95c775e49b064051bbb78f6c28a33d7316cffb890a4e27d5e1c0da043</originalsourceid><addsrcrecordid>eNpNkMtKAzEARYMoWGv_IRt3juYxeS1L1SpUKljdhiST2JE6GZIMMn9ftSKu7l2cexcHgBlGV1QQyq9rwvkRmGAkRCUV4cf_-ik4y_kdIUyUYhOg1h0sWw83Y986s4PPJQ2uDMnDGOAymX6bYdtBAx9jF0vsPHxKsfepjOfgJJhd9rPfnIKXu9vN4r5arZcPi_mqcoTJUhGDmMKyUcwJwXytLOI1YthaK2TgjkhDaSMo5i4EKxUytSeiYR471BhU0ym4PPzmT98PVvep_TBp1NG0-qZ9neuY3vQwaEIpwvgLvzjgLsWckw9_A4z0jx79rYfuAc3YVaM</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>On the Typical Structure of Graphs in a Monotone Property</title><source>Freely Accessible Science Journals - check A-Z of ejournals</source><creator>Janson, Svante ; Uzzell, Andrew J.</creator><creatorcontrib>Janson, Svante ; Uzzell, Andrew J.</creatorcontrib><description>Given a graph property $\mathcal{P}$, it is interesting to determine the typical structure of graphs that satisfy $\mathcal{P}$. In this paper, we consider monotone properties, that is, properties that are closed under taking subgraphs. Using results from the theory of graph limits, we show that if $\mathcal{P}$ is a monotone property and $r$ is the largest integer for which every $r$-colorable graph satisfies $\mathcal{P}$, then almost every graph with $\mathcal{P}$ is close to being a balanced $r$-partite graph.</description><identifier>ISSN: 1077-8926</identifier><identifier>ISSN: 1097-1440</identifier><identifier>EISSN: 1077-8926</identifier><identifier>DOI: 10.37236/4266</identifier><language>eng</language><subject>Graph limits ; Monotone properties ; Structure of graphs</subject><ispartof>The Electronic journal of combinatorics, 2014-08, Vol.21 (3), p.P3.34</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c258t-2a05918d95c775e49b064051bbb78f6c28a33d7316cffb890a4e27d5e1c0da043</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-233011$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Janson, Svante</creatorcontrib><creatorcontrib>Uzzell, Andrew J.</creatorcontrib><title>On the Typical Structure of Graphs in a Monotone Property</title><title>The Electronic journal of combinatorics</title><description>Given a graph property $\mathcal{P}$, it is interesting to determine the typical structure of graphs that satisfy $\mathcal{P}$. In this paper, we consider monotone properties, that is, properties that are closed under taking subgraphs. Using results from the theory of graph limits, we show that if $\mathcal{P}$ is a monotone property and $r$ is the largest integer for which every $r$-colorable graph satisfies $\mathcal{P}$, then almost every graph with $\mathcal{P}$ is close to being a balanced $r$-partite graph.</description><subject>Graph limits</subject><subject>Monotone properties</subject><subject>Structure of graphs</subject><issn>1077-8926</issn><issn>1097-1440</issn><issn>1077-8926</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNpNkMtKAzEARYMoWGv_IRt3juYxeS1L1SpUKljdhiST2JE6GZIMMn9ftSKu7l2cexcHgBlGV1QQyq9rwvkRmGAkRCUV4cf_-ik4y_kdIUyUYhOg1h0sWw83Y986s4PPJQ2uDMnDGOAymX6bYdtBAx9jF0vsPHxKsfepjOfgJJhd9rPfnIKXu9vN4r5arZcPi_mqcoTJUhGDmMKyUcwJwXytLOI1YthaK2TgjkhDaSMo5i4EKxUytSeiYR471BhU0ym4PPzmT98PVvep_TBp1NG0-qZ9neuY3vQwaEIpwvgLvzjgLsWckw9_A4z0jx79rYfuAc3YVaM</recordid><startdate>20140828</startdate><enddate>20140828</enddate><creator>Janson, Svante</creator><creator>Uzzell, Andrew J.</creator><scope>AAYXX</scope><scope>CITATION</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>DF2</scope></search><sort><creationdate>20140828</creationdate><title>On the Typical Structure of Graphs in a Monotone Property</title><author>Janson, Svante ; Uzzell, Andrew J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c258t-2a05918d95c775e49b064051bbb78f6c28a33d7316cffb890a4e27d5e1c0da043</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Graph limits</topic><topic>Monotone properties</topic><topic>Structure of graphs</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Janson, Svante</creatorcontrib><creatorcontrib>Uzzell, Andrew J.</creatorcontrib><collection>CrossRef</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Uppsala universitet</collection><jtitle>The Electronic journal of combinatorics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Janson, Svante</au><au>Uzzell, Andrew J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the Typical Structure of Graphs in a Monotone Property</atitle><jtitle>The Electronic journal of combinatorics</jtitle><date>2014-08-28</date><risdate>2014</risdate><volume>21</volume><issue>3</issue><spage>P3.34</spage><pages>P3.34-</pages><issn>1077-8926</issn><issn>1097-1440</issn><eissn>1077-8926</eissn><abstract>Given a graph property $\mathcal{P}$, it is interesting to determine the typical structure of graphs that satisfy $\mathcal{P}$. In this paper, we consider monotone properties, that is, properties that are closed under taking subgraphs. Using results from the theory of graph limits, we show that if $\mathcal{P}$ is a monotone property and $r$ is the largest integer for which every $r$-colorable graph satisfies $\mathcal{P}$, then almost every graph with $\mathcal{P}$ is close to being a balanced $r$-partite graph.</abstract><doi>10.37236/4266</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1077-8926 |
ispartof | The Electronic journal of combinatorics, 2014-08, Vol.21 (3), p.P3.34 |
issn | 1077-8926 1097-1440 1077-8926 |
language | eng |
recordid | cdi_swepub_primary_oai_DiVA_org_uu_233011 |
source | Freely Accessible Science Journals - check A-Z of ejournals |
subjects | Graph limits Monotone properties Structure of graphs |
title | On the Typical Structure of Graphs in a Monotone Property |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T08%3A58%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-swepub_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20Typical%20Structure%20of%20Graphs%20in%20a%20Monotone%20Property&rft.jtitle=The%20Electronic%20journal%20of%20combinatorics&rft.au=Janson,%20Svante&rft.date=2014-08-28&rft.volume=21&rft.issue=3&rft.spage=P3.34&rft.pages=P3.34-&rft.issn=1077-8926&rft.eissn=1077-8926&rft_id=info:doi/10.37236/4266&rft_dat=%3Cswepub_cross%3Eoai_DiVA_org_uu_233011%3C/swepub_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c258t-2a05918d95c775e49b064051bbb78f6c28a33d7316cffb890a4e27d5e1c0da043%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |