Loading…
The bonding of CO to metal surfaces
The atom and symmetry specific properties of x-ray emission spectroscopy have been applied to the investigation of CO adsorbed on Ni(100) and Cu(100) surfaces. In comparison to ab initio electronic structure calculations, obtained in density functional theory, we develop a consistent electronic stru...
Saved in:
Published in: | The Journal of chemical physics 2000-01, Vol.112 (4), p.1946-1958 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The atom and symmetry specific properties of x-ray emission spectroscopy have been applied to the investigation of CO adsorbed on Ni(100) and Cu(100) surfaces. In comparison to ab initio electronic structure calculations, obtained in density functional theory, we develop a consistent electronic structure model of CO adsorption on transition and noble metals and extend to a conceptual model of the surface chemical bond. A strong CO–substrate interaction is found, characterized by significant hybridization of the initial CO orbitals and the metal bands. In the π system an allylic configuration is found as the result of orbital mixing between the CO 1π, 2π* and the metal dπ-band which is manifested experimentally in the observation of an oxygen lone-pair state. In the σ system experimental evidence of equally strong orbital mixing has been found. Energetically, the adsorbate–substrate complex is stabilized by the π-interaction but is destabilized by the σ-interaction. Furthermore, the internal C–O bond carried by the π-interaction is weakened upon adsorption, which is opposite for the internal C–O σ bond that is strengthened. The equilibrium properties of CO adsorbed on these metals are found to be the direct result of the balance between the σ- and π-interactions; both in terms of the total energy and the local bond properties. |
---|---|
ISSN: | 0021-9606 1089-7690 |
DOI: | 10.1063/1.480773 |